
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, KUMASI

COLLEGE OF SCIENCE

DEPARTMENT OF MATHEMATICS

Numerical Simulation of Elliptic-Parabolic Problem for Two-Phase

Flow Model with Capillary Pressure

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS

THROUGH THE NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD

OF

MASTER OF PHILOSOPHY DEGREE

(SCIENTIFIC COMPUTING & INDUSTRIAL MODELING)

By

Richard Owusu

MAY, 2017



DECLARATION

I hereby declare that, this thesis is the result of my own original research and that

no part of it has been submitted to any institution or organization anywhere for the

award of a degree. All inclusion for the work of others has been duly acknowledged.

Richard, OWUSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student (PG3325614) Signature Date

Certified By:

Prof. I. K. DONTWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Member, Supervisory Committee Signature Date

Dr. Peter AMOAKO-YIRENKYI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Member, Supervisory Committee Signature Date

Dr. Akoto Yaw OMARI-SASU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Member, Supervisory Committee Signature Date

Dr. R. K. AVUGLAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Head of Department Signature Date

i



Dedication

I dedicate this work to my loving and supportive parents, the late MR. and MRS.

Emmanuel Atubiga Assibi and all my siblings. I appreciate you so much.

ii



ABSTRACT

The study of multi-phase flow of fluids in reservoirs is of particular interest in

the field of petroleum recovery. This process is studied with estimated or experi-

mentally determined parameter values and some assumptions. Capillary pressure

is one of the effective parameters influencing fluid flow in hydrocarbon reservoirs.

However, it is assumed negligible by most researchers despite its importance. In

this work, a two-phase (oil-water) flow with the effect of capillary pressure was

modelled and transformed using fractional flow formulation. The model equations

obtained from the fractional formulation comprise an elliptic-pressure equation and

a parabolic-saturation equation. The Finite element (FE) method was employed to

discretize the elliptic-pressure equation and the corresponding parabolic-saturation

equation discretized by the Finite volume (FV) method. Results from the numeri-

cal simulation of the model revealed that capillary pressure has effect on saturation

profile which was observed in diffusive dominated problems but with less effect in

advective-diffusive problems which was observed at points where saturation gradient

was high.
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Chapter 1

INTRODUCTION

1.1 Background to the study

Many phenomena in nature, such as heat conduction or convection, stress in me-

chanical structures, electromagnetic fields, and fluid mechanics are described by

partial differential equations involving spatial derivatives of first and second order

and time derivatives of multidimensional functions (Heckbert, 1993). Researchers

from science and engineering started exploring and investigating fluid flow and

transport in subsurface reservoirs and to use the information acquired to forecast,

manage and control the physical processes as it takes place in a system. This kind

of study often represent the reservoir, with all suitable physics, reservoir properties

and geology as close as possible. According to Bastian (1999), a body which consist

of a matrix (a solid part), with pore space filled with one or more fluids is referred

to as a porous medium.

Mostly petroleum resources are discovered from rocks with enough interconnected

void space which stores and transports fluids. Fluid flow in a reservoir takes place

on a micrometer scale within the pore space of the porous medium. On the con-

trary, hydrocarbons are generally carried in rock zones which are some meters thick

but extending a number of kilometers in the lateral directions (Knut-Andreas and

Bradley, 2016). To observe the dynamic behavior of fluids and to measure the rel-

evant subsurface reservoir parameters require much effort having a large degree of

uncertainty attached in predicting its performance. As a result, simulation studies

are normally performed to measure the level of uncertainty. In reservoir simulation,

a numerical model of the petrophysical and the geological properties of petroleum

reservoirs is used in analyzing and predicting the behavior of fluids in porous media
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over some time. With reservoir modeling, multi-phase flow models embrace the

properties of the reservoir domain together with motion of multiple fluids (ranging

from immiscible/incompressible to miscible/compressible fluids) through the void

space of a porous medium. In multi-phase flow, fluids flow together, allowing dis-

tinct interface between phases due to phase pressure differences (Nordbotten and

Celia, 2012). According to Bear and Bachmat (1991), a chemically homogeneous

part of a system being parted from other by a clearly defined physical boundary

or interface is called a phase. In cases of single-phase systems, a single fluid (e. g.

water) or a number of fluids totally mixed together with each other fills the pore

space of the porous medium.

The partial differential equations for the two-phase fluid flow model in reservoir

simulation describing flow of fluid in a porous medium are mostly non-linear and

parabolic. In this study, the system of parabolic equations obtained for the two-

phase model is reconstructed or remodeled into a system which consists of an elliptic

pressure equation and a parabolic saturation equation by using the concept of frac-

tional flow formulation. These equations are typically hard to solve analytically

hence numerical schemes are employed. Some of these numerical schemes mostly

used in reservoir simulation studies are the classical IMPES (Implicit-Pressure-

Explicit-Saturation), the finite-volume method and the finite-element method. The

numerical scheme considered in this study follows the approach of Luna and Hildago

(2015), which solves the elliptic equation using the methods of finite-element and

the parabolic equation through a finite-volume method.

1.2 Statement of Problem

The study of multi-phase flow models in reservoir modeling and simulation is of

particular interest to researchers in the field of petroleum recovery. Of particular

importance in reservoir modeling are the parameters used in developing the model

which comes with a number of assumptions. Some of these parameters considered in
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reservoir modeling are discussed in Section (3.1). In particular, the main objective

of researchers in the field of reservoir simulation is to explore and investigate fluid

flow and transport in subsurface reservoirs and to use this information acquired

to forecast, manage and control the physical process of the system. According to

Salarieh et al. (2016), capillary forces are one of the effective parameters in hydrocar-

bon reservoirs which are notable in porous media. It is one of the input parameters

in reservoir modeling and simulation process which affects the flow and transport

of fluid in reservoirs. Brooks and Correy (1964) theoretically established a relation

between fluid saturation and the capillary pressure (pc). It is observed that increas-

ing saturation of wetting phase decreases the non-wetting phase saturation, hence,

a reduction in pc. According to literature, the greatest effect of capillary pressure

on dynamic processes is observed in situations where there is large saturation gra-

dient (e.g. at shock fronts) (Dake, 1978). Neglecting the effect of capillary pressure

in such situations will in effect affect the performance of the model. Despite the

importance of the capillary pressure, many researchers including Luna and Hildago

(2015) assume it to be negligible, neglecting its effect in modeling and simulation,

which may affect reservoir management and control of the physical processes of the

system.

1.3 Objective

The study of Luna and Hildago (2015), on two-phase flow problem with the as-

sumption of a zero capillary pressure gives this thesis the opportunity of extension

with the following objectives. This study seeks to:

1. model the two-phase immiscible fluid flow model with the effect of capillary

pressure forces.

2. solve the flow model (with and without the effect of capillary pressure) using

the combined finite element-finite volume method.

3. investigate capillary pressure effect on the two-phase flow model.

3



1.4 Outline of Methodology

To achieve the objectives outlined in Section (1.3), the finite element-finite volume

method is employed. As a result of two classes of partial differential equations crop-

ping up from fractional formulation of the flow model, a combination of these two

methods (finite element and finite volume method) is employed. The elliptic part

of the problem is solved by the finite element method and the parabolic/hyperbolic

part by the finite volume method. The data used for this study is a standard

reservoir data.

1.5 Justification of Study

Capillary forces are one of the effective parameters in hydrocarbon reservoirs which

are notable in the porous media (Salarieh et al., 2016). It is one of the input param-

eters in reservoir modeling and simulation process which affects fluid distribution

in reservoir and fluid flow. Studying the effect of capillary pressure on saturation

profiles is relevant in reservoir simulation as a result of its relation to the phase

saturation and distribution of pore size of the porous media.

This study will explore the contribution or the capillary pressure effect on saturation

profile. This in effect will help to predict reservoir performance under the action of

capillary pressure.

1.6 Organization of the Study

This study is organized into five chapters.

• The first chapter gives an introduction to the study by presenting the back-

ground information, problem statement and the objectives of the study.

• Chapter two is the review of relevant literature.

4



• The third chapter is the outline of the methodology, in which the two-phase

flow model is mathematically modeled to include the capillary pressure effect.

In addition, the Finite element and the Finite volume methods as used in this

study are reviewed in this chapter.

• Chapter four presents the numerical implementation of the two-phase flow

model.

• In the fifth chapter, the numerical results obtained from the simulation are

presented and discussed. Conclusions and some recommendations are as well

outlined in this chapter.
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Chapter 2

LITERATURE REVIEW

2.1 Reservoir Models and Formulation

According to Tore and Eyvind (2008), a number of ways in formulating equation sys-

tem for two-phase flow modeling in a porous medium is explored. It is realized that

the system of equations describing how the phases are accumulated, transported,

and injected/produced in the model are coupled. This partial differential equations

and the auxiliary conditions permits equation manipulation so that the dependent

variables of interest are the main differences between the system formulations. In

their work, five different formulations were tested for two-dimensions and one 1-

dimensional formulation. Tore and Eyvind (2008) compared these formulations

according to their numerical performances such as robustness (numerical stability)

and the time taken to solve the problem. Six main types of equation system formu-

lations were considered in this study which include; Partial pressure formulation,

Buckley-Leverett formulation, Flooding formulation, Phase pressure-saturation for-

mulation, Fractional flow formulation and the Weighted pressure formulation. The

tests performed in their study revealed that the fractional flow formulation is the

best and most robust formulation.

The main objective of the work done by Yufei et al. (2007), is the reconstruction of

the two-phase model for fluid flow in a porous medium using fractional formulation

approach and its applications. The IMPES (IMplicit-Pressure-Explicit-Saturation)

concept is introduced for the fractional flow (FF) formulation using a finite vol-

ume element (FVE) method. It was stated that a more adaptive possibilities are

proposed for the FF system depending on the differences that occurs between the

fractional flow (FF) formulation and the fully coupled (FC) formulation. In order
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to have a clear description and explanation to the differences between both formu-

lations (fully coupled and fractional flow formulation method) and to have a clear

perspective of the possible methods for fractional formulation, this work compared

the adaptive techniques and numerical results obtained from the two formulations.

The same numerical technique i.e., vertex-centered finite volume element method

was used to discretize the fully coupled equation and the fractional flow equation

with implicit scheme and IMPES respectively. Depending on the formulation and

the technique to discretize the model an upwind scheme was employed for the two

equations of the fully coupled formulation and for the fractional formulation the

upwind scheme was employed only for the saturation equation. Numerical results

and CPU times were presented and compared for both formulations and was re-

alized that the fractional formulation was found efficient for advection-dominated

two-phase flow problems. In addition, it was realized by Yufei et al. (2007) that

the fractional flow formulation provides a considerable possibility for adaptive meth-

ods, and besides this, the fractional formulation makes it possible for a combination

of different methods of discretization, one for pressure and another for saturation

equation.

An introduction of existence of results and approximation technique for two-phase

flow equations in a porous medium was done by Michael and Ben (2008). In order

for the capillary pressure function to be generated for extreme saturations, it was

assumed that the medium considered for this study could have hydrophobic and

hydrophilic elements. The main objective of their study was the outflow boundary

conditions modeling an open space interface. Since a maximum principle was not

satisfied by any of the unknown pressure values p1 and p2 in their model considered,

and also on the outflow boundary no condition was satisfied by the global pressure,

the uniform boundedness for solution of the two-phase flow system becomes hard

to prove. However in their work, Michael and Ben contributed to literature by

deriving uniform bounds for solutions of two-phase system having outflow boundary

conditions.
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Aarnes et al. (2007) observed that fluid transport in petroleum reservoirs take place

on a broad variety of physical scales posing great challenge to reservoir modeling and

simulation since effects posed by fine-scale reservoirs mostly have a very great effect

on flow patterns on large scales. Therefore to have a very reliable quantitative and

qualitative results of simulation, it is very crucial to resolve all relevant scales and

the interactions there in. In order to bring under control the challenge of multi-scale

in modelling and simulation, it is a usual practice to use the technique of upscaling

or homogenisation. In this procedure, one represents the reservoir characteristics

or properties by some averaged properties, and solving the flow problem on coarse

grids. A number of upscaling procedures give results that are reliable for only a

small scope of flow scenarios which is unfortunate. As a result of the increased in

demand for reservoir simulation studies, a more rigorous multiscale methods have

been developed which absorb subscale effects more directly. In this work, some

important scales for flow simulations were generally reviewed. Again, they pre-

sented and discussed a number of upscaling methods that have played a role in

reservoir simulation history. Finally, they presented some more current procedures

for scale modelling in the flow simulations hinged on the multi-scale paradigm. In

conclusion, the advantages and the disadvantages of the use of multi-scale meth-

ods, instead of the traditional upscaling procedures in reservoir simulation were

discussed. It was observed that solutions produced on both the fine scales and

coarse scales by the multi-scale methods were accurate, and consequently it could

be utilized as an efficient estimate fine scale solution techniques or a robust upscal-

ing techniques. It becomes more flexible in choosing a solution technique to solve

the saturation equation, since fine scale velocities are accessible at comparatively

low cost of computation. The success of upscaling technique for saturation equa-

tions is very limited. Taking this into account will be helpful in performing the

transport on a very fine grid affordable, and a fine scale velocity field may assist

one to choose such a grid and also to ensure that the resulting solution is valid.
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Several related formulations of the flow equations were reviewed by Lee and Froehlich

(1986) which include the primitive shallow-water equations, which consist of an

equation for conservation of momentum in each coordinate direction and an equa-

tion for conservation of mass. Appropriate boundary conditions for the problem

were reviewed. The use of equal-order and mixed interpolation with various formu-

lations of the flow equations were discussed. It was seen that both mixed interpola-

tion and derivative or wave-continuity equation formulations are useful techniques

for avoiding spurious oscillations. The treatment of specified velocities, discharges,

stresses, and water-surface elevations as either essential or natural boundary condi-

tions was discussed. It was seen that there are many possible ways of handling any

given boundary condition. Finally, Galerkin’s method of weighted residuals were

also reviewed using several alternatives. Both point collocation and least squares

methods offer the promise of being effective techniques for solving shallow-water

equations.

The pressure at a grid-block containing a well differs from the average pressure in

the same block and the bottomhole flowing pressure for the well (Chen and Zhang,

2009). To account for the difference, several finite difference models for wells are

developed. The work done by Chen and Zhang (2009), discusses a systematic ap-

proach in deriving well models for other numerical techniques like the standard

finite-element, control volume-finite element, and the mixed finite-element tech-

nique. In order to check the accuracy of the these well models, numerical results

for an example of simple well demonstrating refinement effects of local grid were

presented. The numerical results obtained from the study revealed less than 0.01

absolute error on the computation for pressure, showing the numerical model is

accurate.
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2.2 Capillary Pressure for Two-Phase Models

According to Brooks and Correy (1964), most of the literature describing fluid flow

of two imiscible fluids makes simplifying assumptions that are in most cases far from

realistic. They pointed out that in real cases, there exist functional relation among

the saturation, the pressure difference between air and water (capillary pressure),

and the permeabilities of air and water hence their study focused on describing

these functional relations and the characteristics of the porous media affecting them.

To achieve this objective, Brooks and Correy (1964) presented a theory following

the Burdine approach which establishes the functional relations among saturation,

difference in pressure, and air and liquid permeabilities in relation to hydraulic

properties of the porous medium. The techniques employed to determine these

hydraulic properties from the capillary pressure - desaturation curve were discussed.

In addition, from the hydraulic properties which were determined experimentally,

permeabilities of liquid and air as functions of saturation and capillary pressure were

established. This theory presented by Brooks and Correy (1964) also reports on the

necessary conditions for similarity between any two flow systems in a porous medium

with two immiscible fluid phases occupying it. The non-wetting phase in this case

is static while flow of wetting phase is by the law of Darcy. The experimental

evidence presented indicates that these functional relations (for isotropic media)

can be described in terms of two pertinent soil parameters, one of these parameters

is called the ”bubbling pressure” which is in relation to the maximum pore-size

distribution and forms a continuous network or flow channels inside the medium.

The other parameter is called the “pore-size distribution index” evaluating the

distribution of sizes of the flow channels within a particular porous medium.

According to Shams et al. (2015), Engineers researching in the field of numeri-

cal reservoir simulation usually consider the use of capillary pressure to initialize

the model. Nevertheless, capillary pressure effects on performance of petroleum

reservoirs might not be understood fully for different flow processes. The principal
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goal of this study was to present the oil-gas and water-oil capillary pressure effect

on performance of petroleum reservoirs for reservoirs which produce under water

injection, gas injection and natural depletion recovery processes on a number of

reservoirs and production parameters. The naturally fractured and conventional

reservoirs were investigated. With naturally fractured reservoirs, an investigation

of both the fracture and matrix capillary pressures effect were done in the event

where the driving force is only the capillary pressure imbibition and in the case

when both capillary pressure imbibition and gravity drainage recovery processes

are both active. The simulation results of small and large transition zones were

compared to the results of models of zero transition zones. And three difference

indicators were estimated for each run in order to quantify the effect of the capillary

and the gravitational forces. These effects on different reservoir heterogeneity levels

were quantified by performing hundreds of runs of the model. For different recovery

processes, it was realized that effects of capillary pressure were different. Though

the capillary pressure is found to be important for model initialization, it may be of

less importance during flow calculations in all situation, they reported. In depletion

runs capillary pressure was found to be more important than in most displacement

runs. Studying on the relation between reservoir heterogeneity level and the effects

of capillary pressure, no clear correlation was found to exists between them. Under

certain conditions for naturally fractured reservoirs, it was again realized that ef-

fects of the fractured gas-oil capillary pressure increase. To validate the conclusions

drawn from this study, Shams et al. (2015) used a reservoir model to affirm the

results obtained from the hypothetical models.

Botero et al. (2016), studied the effect of Dynamic capillary pressure in Two-Phase

flow in a porous medium. There exist theories which propose the capillary pres-

sure dependence on both saturation and time rate of change of saturation. From

this study, the significance of dynamic effects on the relationship between capillary

pressure and saturation was investigated through experiments in a homogeneous

porous medium. A number of laboratory experiments were conducted involving
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motion of two immiscible fluids, water and Tetrachloroethylene (PCE), in a homo-

geneous column. The experiments consisted of a continuous cycle of imbibition,

and drainage, where a large pressure of 20kPa is applied to the displacing fluid.

Contrary to traditional procedure, no hydrophobic or hydrophilic membranes were

used in this experimental set-up. In this paper, the experimental set-up was de-

scribed and preliminary results were presented as well.

Two-phase flow in a porous medium with heterogeneous capillary pressure func-

tions was examined in the work done by Helmer and Steinar (2011). In literature,

a very little attention is been drawn to this problem which creates challenges for

numerical discretization. This results from saturation discontinuities arising from

the interface of regions with different homogeneities in the domain. A standard

scheme possessing an important characteristic (at the discrete level) of being pres-

sure continuous was employed for the discretization with harmonic mean of the

absolute permeability as the basis for the scheme. Nevertheless, a recent multi

point flux approximation scheme, was extended to count for two-phase flow so as

to look into 2-D flow phenomena by an accurate numerical method. At discrete

level, the multi point flux approximation scheme was found to be pressure continu-

ous and was employed in discretizing two-phase flow pressure equation in fractional

formulation which is appropriate for capillary heterogeneity. Helmer and Steinar

(2011) after investigating one-dimensional flow problem with known semi-analytic

solution, found out that the best numerical results was given by the usage of stan-

dard schemes hinged on harmonic mean of the absolute permeability. The flow

problem was solved in an implicit-pressure explicit-saturation setting, employing

fractional formulation approach, appropriate for capillary pressure heterogeneity.

By the use of second-order central upwind scheme, the other part of the equation,

the saturation equation, for the two-phase flow model was discretized. By employ-

ing both unstructured triangular grids and structured quadrilateral, some numerical

examples were presented to demonstrate the relevance of capillary pressure hetero-

geneity in two-dimensional two-phase flow. In the study, a significant effect of the
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capillary pressure heterogeneity was observed on the water breakthrough. Hence it

would be practicable presuming the effect of capillary heterogeneities in complex

real reservoirs to be significant.

2.3 Finite Volume and Finite Element Method

Generally on a given grid, there is an extensive study on the means to develop nu-

merical schemes for problems of partial differential equations. One of these schemes

applied to structured grid is the classical finite difference scheme. Shashkov (1996)

proposed mimetic finite difference scheme which is more favourable when working

on highly unstructured grids. The analysis on the convergence as well as the super

convergence for this proposed scheme by Shashkov (1996) for smooth problem on

a smooth mesh was also studied by reconstructing the scheme in a mixed finite-

element method form (Berndt et al., 2005). However the cost of computation for

these schemes was a concern. The finite difference scheme poses a number of re-

strictions which is solved by the Finite volume methods which are normally locally

mass conservative. Studies shows that, the theory of finite-volume for diffusion

equation which comes with scalar coefficient on unstructured mesh has advanced

significantly. Some of these applications can be found in the work of Lazarov and

Mishev (1996) and Mishev and Qian-Yong (2016). With the assumption of smooth

meshes, the convergence for one of these schemes, the multi-point flux approxima-

tion, on quadrilateral grids is proven (Klausen and Winther., 2014). Consider the

domain Ω. Eymard et al. (2016) built an approximate gradient of an elliptic prob-

lem solution in Ω which was later proven to be convergent in Hdiv(Ω) by the use

of classical finite-volume piecewise constant approximation of the solution. They

stated that when the solution is in H2(Ω) an error estimate is given. The control

volume finite-element method, mostly called finite volume element method is one

other posibility worthy of consideration in the finite volume approach which Huang

and Xi. (1998) studied for general self-adjoint elliptic problems. These methods

are mostly locally mass conservative and are applied on grids which are flexible,
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however they fail in preserving the differential operator symmetry, and never yield

direct estimation of the velocity field.

The ideas of finite element analysis date back much further. It was first introduced

by Courant (1943). The technique whereby an approximating function which is

required in a piecewise application for any method of variation is referred as the

finite-element method. The work of Courant (1943) introduces the use of piecewise

continuous functions in the applied mathematics literature. These functions are

defined on triangular domains. The idea of minimizing a functional by the use

of linear approximations over sub-domains was developed by Courant. The values

of these approximating functions are only specified at the discrete points of the

sub-domains referred to as nodes of a mesh of elements. In 1942, Richard Courant

published his paper to the American Mathematical Institute adding a two-paged

example on how the methods of variation introduced by Lord Rayleigh in 1877

can be widely used in potential theory. In this example, he employed piecewise-

linear approximations on a set of triangles referred by him as ”elements,” to solve

some examples on two-dimensions - and the Finite-element was born (Pelosi, 2007).

Engineers and mathematicians, from 1950s to 1970s developed the finite element

method into a general method to solve partial differential equations numerically.

Lee and Froehlich (1986) in his work reviewed publications on the the finite-element

methods applied to solving two-dimensional surface-water flow equations in hori-

zontal plane. According to Lee and Froehlich (1986), finite-element methods are

more convenient to model two-dimensional flows on complex geometry with spatially

variable resistance. A two-dimensional finite-element surface-water flow model with

depth and vertically averaged velocity components as dependent variables gives the

user a higher level of flexibility in defining the geometric properties of the medium

like the boundaries of a channel, islands, water bodies, embankments and dikes.

In solving the one-dimensional convection-diffusion equation with a trapezoidal-
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rule scheme, Price et al. (1968) showed that finite-element method takes lesser

nodes and lesser time for computation than the finite-difference method to achieve

comparable accuracy. Furthermore, to solve equations of one-dimensional gravity-

wave motion where both depth and grid are variables of interest, Thacker (1978) also

showed that finite-element solutions were more accurate in comparison to solutions

of finite-difference. Johnson et al. (1984) studied on finite-element method for linear

hyperbolic problems which gave a survey of some recent work on finite-element

method for convection-diffusion problems as well as first-order linear hyperbolic

problems.

Comparing the two methods, the works of Idelsohn and Onate (1993), and Zienkiewicz

and Onate (1990) compared the finite-element and the finite-volume methods, show-

ing that the Finite Volume method shares the theoretical basis of the finite-element

method, since it is a particular case of the Weighted Residuals Formulation. How-

ever, the weighting used in the first (constant volumes in the case of first order

approximation) allows to take advantage of some properties of conservation, and

the resolution algorithms are posed in a very advantageous way.

The most common mathematical models that represent two-phase problems are

represented by a system of parabolic equations with the variables of interest being

pressure and saturation of the different phases involved in the process. In literature,

these parabolic problems are remodelled into a system consisting of an elliptic and

a hyperbolic equation for pressure and the saturation respectively (Yufei et al.,

2007). As a result of these two different kinds of partial differential equations,

different numerical schemes are carefully chosen in literature for each particular

partial differential equation some of which combines two different methods for the

problem.

In solving numerically system of partial differential equations that arise from Black-

Oil model, Bergamaschi et al. (1998) proposed a sequential coupling of mixed-finite
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element and shock-capturing finite-volume techniques. The Brezzi-Douglas-Marini

space of degree one (BDM1) was employed in approximating Darcy’s velocity in the

pressure equation which is parabolic in nature, while a higher order Godunov type

scheme, which in this study was extended to triangle based unstructured grids, was

used in solving the system of mass conservation laws. In this work, a sequential

coupled mixed finite-element/shock-capturing finite volume method was developed

and it was applied to the numerical approximation of the solution of time-dependent

two-dimensional equations of the Black-Oil model. It was stated in their work that

in treating the phase pressure and the velocity simultaneously, the high-order mixed

finite-element is one of the numerical schemes that accurately solves the problem.

On the contrary, shock-capturing finite-volume method exhibits the characteristics

of resolving accurately steep gradient without spurious numerical oscillations while

taking numerical dissipation effects at very low levels. In this case one usually con-

siders conservative formulation, which allows one to accurately predict the moving

discontinuities that appears in the physical solution. The numerical results obtained

on 1-D and 2-D test cases prove the effectiveness and the robustness of the coupled

mixed finite-element and shock-capturing finite volume techniques. The coupling

concept seems particularly suitable to handle high heterogeneities and simultane-

ously fixing accurately steep gradients without spurious oscillations.

Luna and Hildago (2015) used a combined finite element and finite volume technique

for simulating the solution to the two-phase flow model obtained in their work. Frac-

tional flow formulation for two-phase flow model was used in the work of Luna and

Hildago (2015). In their study, they obtained the solution of the model numerically

by using both the techniques of finite-element and the finite-volume. The values of

the cell interface velocities of the finite volume mesh was obtained from point-wise

pressure values at the finite element nodes with second-order non-oscillatory recon-

struction procedure. According to Luna and Hildago (2015), the choice of these

two different methods for the same problem was because finite-element methods

were specifically designed to be used for elliptic (and parabolic) problems. However
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applying it to hyperbolic problems, finite-element fail in its standard or traditional

formulation, essentially when there is discontinuity of solutions. On the other hand,

finite-volume methods do well in these cases since discontinuous solutions are well

propagated by finite-volume methods. The numerical results obtained for their

study were compared to the results of ECLIPSE (commercial code) which shows

appropriate behavior from qualitative point of view. The treatment of two-phase

flow problem was proven effective and appropriate in terms of the saturation so-

lution in comparison to the results from ECLIPSE. The advance of the saturation

front in this problem was controlled by the fractional flow rate derivatives to water

saturation.
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Chapter 3

METHODOLOGY

3.1 Reservoir Rock and Fluid Properties

The amount of petroleum reserves in a trap and the rate at which this can be

recovered depends basically on the characteristics of the trapped rock and the kind

of fluids it is contained in the rock. Certain characteristics are determining factors

of the total amount of petroleum in place; other properties also limit the fraction

of this amount in place that can be reproduced. In addition, the flow rate of fluids

in a reservoir is determined basically by some other rock properties and in addition

with some other fluid properties.

3.1.1 Porosity

In conventional petroleum reservoirs, hydrocarbons, like crude oil or natural gas,

are basically trapped in place by overlying rock formations which has a very low

permeability. They are found in pore spaces between the grains of porous sedimen-

tary rocks. These rock grains are irregular in shape, resulting in many pores left

between the rock grains (Figure 3.1).

Figure 3.1: Random packing of rocks of irregular shapes
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The spaces between the rock grains are termed as pores and the total amount/volume

of pore space in a sample of a particular rock is known as its pore volume. The

net volume of grains is termed grain volume. The total volume of a rock sample

termed the bulk volume, Vb which is the sum of both the grain volume, Vg, and the

pore volume, Vp. Another primary rock property called the porosity, φ, which is

the fraction of pore volume to the total volume of a rock sample. Mathematically:

φ =
Vp
Vb

(3.1)

In a reservoir, pore spaces between rock grains can be interconnected that con-

tributes to fluid flow or permeability. The interconnected pore spaces in a rock

contributing to fluid flow or permeability in reservoirs is called the effective poros-

ity, φe. Residual porosity, φr, is the isolated and non-connected pore spaces which

trap fluids in place and hence do not contribute to fluid flow. Total porosity is the

total volume of pore space in the rock grain that contributes to fluid flow or not.

Mathematically;

φt = φr + φe (3.2)

3.1.2 Permeability (K)

This property is the rock’s ability to conduct or transmit fluids through its intercon-

nected pores. Different fluids experience different permeabilities in the same sample

of rock. Increasing permeability leads to increasing fluid flow through the medium

under a given set of conditions. The earliest attempt at measuring permeability

was in 1856 studied by Henry Darcy. Permeability is termed specific/absolute per-

meability in a porous medium where the medium is completely saturated with one

phase. However in cases of multi-phase flow, relative permeability is considered.

The ratio of of a fluid’s effective permeability at given saturation to the absolute

permeability of the medium at total saturation is referred as Relative permeability.

The measure of conductance of a porous medium for one fluid phase when more
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than one fluid saturate the medium with is called the effective permeability.

3.1.3 Compressibility (C)

For a unit change in pressure under certain conditions, the volume of a particular

substance changes. This property of a substance is called Compressibility. Let

C, V and P be compressibility of a substance, volume of substance and pressure

respectively, then compressibility is defined mathematically as:

C = − 1

V

(
∂V

∂P

)
. (3.3)

The negative sign in equation (3.3) is added to give a positive compresibility. This

is due to the fact that the volume of a particular substance always decreases with

increase in pressure hence the partial derivative in (3.3) will be negative. There-

fore, the minus sign is added to give a positive compressibility value. At constant

temperature, equation (3.3) describes the change in volume of substance during a

change in pressure. When the pressure of the internal fluid inside the void spaces of

a rock grain, subjected to a constant external pressure, is reduced, the rock’s bulk

volume decreases with increase in the volume of the solid rock materials (Craft

and Hawkins, 1991). This volume change slightly reduces the porosity of the rock,

indicating that rock porosity depends on pressure due to rock compressibility. If

pressure falls due to production or extraction of fluid, there is compression of rocks

hence reduction in porosity. Fluids can be considered as incompressible, slightly

compressible and compressible. Gases are highly compressible compared to oil and

water which are mostly considered incompressible in flow modeling.

3.1.4 Density (ρ)

The density of a solid or a fluid generally depends on the temperature and pressure

of the fluid. However in isothermal system, temperature is considered constant.

The compressibility (the pressure dependence of density) of a solid matrix and

water can be considered negligible. However because of the high compressibility of
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gas, pressure effect on density must be considered in reservoir studies.

3.1.5 Viscosity (φ)

Viscosity is another important fluid property which measures the resistance of a

fluid to flow. Fluids obey Newton’s Law of Viscosity (equation 3.4). To be specific,

viscosity determines the temporal angle deformation τ of a fluid caused by a given

applied shear stress τ ,

τ = µ
∂τ

∂t
(3.4)

where, µ is the fluid’s dynamic viscosity, and the kind of fluids following equation

(3.4) are known as Newtonian fluids. In general, the dependence of viscosity on

pressure is very low hence usually neglected. However, temperature T , has a strong

effect, where µ decreases with T for liquids and increases for gases (Yufei et al.,

2007). Viscosity of a fluid can be accounted for by Reynolds number (Re) expressed

as:

Re =
velocity × distance

V iscosity
(3.5)

Low Re means flow of fluid does not change with time and high Re means flow of

fluid changes with time.

3.1.6 Fluid Velocity (~v)

In continuum mechanics, flow velocity in fluid dynamics is a vector field which is

mathematically used in describing the motion of a continuum. Equation (3.6) which

is the flow velocity

~u = ~u(x, t) (3.6)

gives the velocity of a fluid element at position x and time t. The length of the flow

velocity vector is the flow speed and is a scalar. Fluid velocity effectively describes

the motion of fluids and many other physical properties of fluids can as well be

written mathematically in terms of the flow velocity.

21



3.1.7 Wettability

Fluids have a preferential attraction to itself, and the relative strength of the cohe-

sive forces result in surface tension which develops on a fluid-fluid interface. How-

ever, molecules of fluids may as well have a preferential attraction to solid interfaces.

Suppose two fluids occupy a solid surface, the molecules of the fluid displaying the

greatest attraction for atoms of the solid will be the fluid occupying the greatest

part of the solid surface and consequently will displace the other fluid. In reservoir

engineering, there is a likelihood for a fluid to spread over the surface of a solid

in the presence of other fluids that are immiscible. The fluids interaction with the

solid phases is referred as Wettability. It is the angle of contact, θ, between liquid

droplets in thermal equilibrium on a horizontal surface. In a typical reservoir, the

Figure 3.2: Wettability and Contact Angle

magnitude of the adhesive forces decreases rapidly with distance to the wall (Bas-

tian, 1999). The interaction with the cohesive forces leads to a specific angle of

contact θ between the solid surface and the fluid-fluid interface that depends on the

properties of the fluids. The fluid for which 0 < θ < 900 is called the wetting phase

fluid, the other fluid is reffered as the non-wetting phase fluid. In the first case of

Figure 3.2, the wetting phase is water and in the second case, oil is the wetting

phase. In the case of three immiscible fluids, each fluid is either wetting or non-

wetting with respect to the other fluids. Real rocks may be completely water-wet,

and indeed are commonly so. They may, however be oil-wet or neutrally wet or

have a mixed wettability (depending on the contact angle, θ).
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3.1.8 Capillary Pressure

The capillary pressure is the difference between the pressures in each of the two

fluids forming an interface. The capillary pressure is proportional to the surface

tension. Note that the greater of the two pressures is developed in the fluid which

contains the center of curvature of the curved fluid interface. The pressure is pro-

portional to the surface tension, but inversely proportional to the radius of the tube

(Paul, 2016). As the radius of the tube increases, the capillary pressure decreases.

The difference in pressure (the capillary pressure) causes the interface to rise up

the capillary tube until the weight of the suspended column of fluid balances the

capillary force that is associated with the capillary pressure.

In an oil-water system, consider Figure 3.3, the free water level is the height of the

interface when the radius of the capillary tube tends to infinity (i.e., the capillary

pressure is zero and h=0) as before. This interface exists at a given absolute pressure

PFWL. Capillary forces exist inside the restricted capillary tubing that result in the

rise of the water to a height h above the free water level.

Figure 3.3: Capillary pressure in an oil-water system. Source: Glover Paul
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In reservoirs, capillary pressure is an important parameter that needs to be consid-

ered due to its implications. Real rocks contain an array of pores of different sizes

connected together by pore throats of differing size. Each pore or pore throat size

can be considered heuristically to be a portion of a capillary tube.

3.2 Partial Differential Equations

Fluid dynamics in oil petroleum reservoir is governed by non-linear and complex

systems of partial differential equations. In differential equations, one typically

studies a few classes of problems for which there are closed form solutions, such

as ordinary linear differential equations with constant coefficients. Most problems

of interest in real world simulation are much more complex. They mostly involve

domains of two or more dimensions or they come with nonlinear effects, yielding

partial differential equations or non-linear differential equations respectively.

Partial differential equations states the relationship between a function of more than

one independent variable and the partial derivatives of the function with respect to

the independent variables. This is different from an ordinary differential equation,

which comes with functions of only one variable. In most engineering and science

problems, either space (x, y, z) or space and time (x, y, z, t) represents the indepen-

dent variables. The dependent variable is dependent on the physical problem to

model. If a function of two variables is denoted p(x, y), then one may consider the

following as examples of partial differential equations:

∂2p

∂x2
+
∂2p

∂y2
= 0 Laplace’s Equation (3.7)

∂2p

∂x2
− ∂2p

∂y2
= 0 Wave Equation (3.8)

∂2p

∂x2
− ∂p

∂t
= 0 Heat Equation (3.9)

∂2p

∂x2
+
∂2p

∂y2
= g(x, y) Poison Equation (3.10)
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3.2.1 Classifications of PDEs

Generally, second-order partial differential equations in two independent variables

x, y and the dependent variable p(x, y) is of the form:

M
∂2p

∂x2
+N

∂2p

∂x∂y
+Q

∂2p

∂y2
+R

∂p

∂x
+ S

∂p

∂y
+ Tp+ Z = 0 (3.11)

where M,N,Q,R, S, T, Z may be functions of x, y or constants in which case we

have linear equation. If the term Z 6= 0, the PDE (3.11) is called Homogeneous

and Non-homogeneous otherwise. The classification of (3.11) is dependent on the

sign of the discriminant, N2 − 4MQ, as follows:

Table 3.1: Classification for Second-Order Linear PDE

Discriminant Classification of PDE
N2 − 4MQ < 0 Elliptic
N2 − 4MQ = 0 Parabolic
N2 − 4MQ > 0 Hyperbolic

3.2.2 Linearity

A partial differential equation is linear provided the power of the dependent vari-

able and its derivatives is one (1) (no product of the unknown function and its

derivatives) and non-linear if otherwise. For example

∂u

∂t
+ t

∂u

∂x
= 0 (3.12a)

∂2u

∂x2
+
∂2u

∂x2
= 0 (3.12b)

ut − kuxx = 0 (3.12c)

ut + uuxx = 0 (3.12d)

ut cosu− uuxx = 0 (3.12e)
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Equations (3.12a,b,c) are linear while equation (3.12d,e) are non-linear. This is most

easily described in the context of a differential operator L, applied to a function u

(defined Lu = ∂u
∂x

). The operator is said to be linear if for any two functions u, v

and any constant c the following hold.

1. L(u+ v) = Lu+ Lv and

2. L(cu) = cLu

3.2.3 Initial Conditions (IC) and Boundary Conditions (BC)

Solutions to differential equations are infinitely many. The general solution to a

differential equation of order n is indeed dependent on n arbitrary functions. For

partial differential equations, the solution is singled out by specifying auxiliary

conditions to the partial differential equation. Boundary conditions imposed on

the boundary of the domain of interest are added to partial differential equations

that models equilibrium processes The solutions for partial differential equations

that models dynamical processes are specified by imposing one or more conditions.

The number of IC imposed on the equation is dependent on the highest-order time

derivative appearing in the equation. In favorable circumstances, the initial and/or

boundary conditions imposed on the equation helps in finding unique solutions. The

addition of suitable boundary conditions to a partial differential equation is referred

as boundary value problem whereas the partial differential equation together with

boundary and initial conditions is referred as initial-boundary value problem.

There are three basic types of boundary value problems arising in a number of

applications. Consider a linear partial differential equation of the second order

Lu = G(x, t) (3.13)

where L is a second order linear differential operator. Related to differential equa-

tion (3.13) we define the following boundary conditions:
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1. Dirichlet Boundary Condition: Dirichlet BC usually corresponds to setting

the value of a field variable on the boundary, i.e., the solution value is specified

on the boundary. We usually write these conditions in the form

u(x, t)|∂Ω = f(x, t) (3.14)

2. Neumann Boundary Condition: Neumann BC usually specifies a flux condi-

tion on the boundary i.e., the normal derivative ∂nu(x, t) of the solution is

specified on the boundary ∂Ω, named after Carl Gottfried Neumann. This is

written symbolically as

∂nu(x, t)|∂Ω = g(x, t) (3.15)

3. Robin Boundary Condition: We have Robin bounary condition if one specifies

a linear combination of the solution and its normal derivative on the boundary.

For some nonzero constants or functions a and b and a given function h defined

on ∂Ω, this condition can be expressed as

a u(x, t)|∂Ω + b ∂nu(x, t)|∂Ω = h(x, t) (3.16)

If f(x, t), g(x, t) and h(x, t) in (3.14), (3.15) and (3.16) respectively, are identically

zero in the domain, then we have homogeneous boundary conditions ; otherwise, the

boundary conditions are non-homogeneous. The kind of boundary condition can

vary from point to point on the boundary, but at any given point only one BC can

be specified.

In reservoir simulation, the boundary condition is such that the reservoir is assumed

to lie within some closed curve C allowing no flow across its boundaries. Also

fluid injection and production occurs at wells mostly referred as point sources and

sinks. At the points where flow is not allowed, the boundary condition requires

that the normal component of the vector ~v at the curve C be set to zero which is

comparatively a tough thing to do numerically for an arbitrary curve C. However,
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since our domain of interest is mostly assumed to lie inside the interior of the

reservoir, it becomes more adequate to represent the boundary of the curve in a way

such that the reservoir is embedded in a rectangle (or rectangular parallelepiped).

In reservoir modeling, the value of the normal component of the quantity is mostly

specified representing flow across that boundary. However, one alternative means

is to set a no flow boundary condition and placing fictitious wells at grid points on

or near the boundary. Injection at such wells implies flow is into the region over the

boundary, while production implies flow is out of the region across the boundary.

Finally, it is also desirable to specify the value of the pressure at the boundary,

rather than rate, in addition to the other possible boundary conditions.

3.3 The Model

The use of mathematical models of petroleum reservoirs started since 1800s. A

mathematical model is made of a number of equations describing fluid flow in

a conventional or unconventional reservoir, which comes with appropriate set of

boundary and/or initial conditions (Zhangxin et al., 2006). The flow of fluids in

conventional or unconventional reservoirs is governed by some basic principles which

includes mass conservation principle, the conservation of momentum and energy and

equation of states principle.

3.4 Mass Conservation

For a closed system, the conservation of mass principle is implicitly used by requiring

that the mass of the system remain constant during a process. For control volumes,

mass can be allowed to cross the boundaries and so the amount of mass entering

and leaving the control volume Ω must be accounted for.

Consider an arbitrary volume Ω (Figure 3.4), fixed in space with a closed surface

S bounding the space. The mass conservation equation states the balance between
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Figure 3.4: Control Volume

the rate of mass change in the arbitrary volume Ω, and inflow of mass through the

boundary surface S. For a differential volume ∂Ω, the mass of a fluid within Ω is

defined as:

dm = φρdΩ (3.17)

which gives the total mass of the fluid in Ω as:

m =

∫
Ω

φρdΩ (3.18)

where m, φ and ρ are respectively the mass of fluid, porosity and the fluid density.

The time rate of change of mass m, in an arbitrary volume is expressed as

∂

∂t
m =

∂

∂t

∫
Ω

φρdΩ (3.19)

In addition, the mass of the fluid varies through the effect of fluxes which expresses

the contributions from the surrounding points and through the sources q. The net

contribution from the incoming fluxes through the surface S, with a unit vector ~n

(pointing outward) for the surface normal is given as

−
∮
S

(~F · ~n)ds; ~F = ρ~v (3.20)
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The flux represents the quantity which passes through the surface at a particu-

lar time or the flow rate of a property per unit area (surface). Finally the total

contributions from the sources q, in the arbitrary volume, is given as

∫
Ω

qdΩ

A general form for the law of conservation is expressed in stating that the rate of

change of the mass of the fluid in an arbitrary volume Ω, must be equal to the sum

of the contributions from the sources q and the net contributions from the incoming

fluxes through S, with a unit vector ~n (pointing outward) for the surface normal

(Hirsch, 1988). Mathematically, the mass conservation equation is expressed in

integral form as:

∂

∂t

∫
Ω

φρdΩ = −
∮
S

(~F · ~n)ds+

∫
Ω

qdΩ (3.21)

From the divergence theorem

∮
S

(~F · ~n)ds =

∫
Ω

O · ~FdΩ, (3.22)

the mass conservation equation (3.21) becomes

∂

∂t

∫
Ω

φρdΩ = −
∫

Ω

O · ~FdΩ +

∫
Ω

qdΩ (3.23)

Hence in the differential form, equation (3.23) is written as:

∂

∂t
φρ = −O · ~F + q (3.24)

By introducing the flux ~F = ρ~v, the equation of mass conservation for a single

phase is expressed as:

∂

∂t
φρ+ O · ρ~v = q (3.25)

In petroleum and natural gas calculations, volumetric factors were introduced by
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researchers in order to be able to relate fluids volume obtained at the surface (stock

tank) to the volume that fluids actually occupied when compressed in reservoirs.

Mathematically

B =
Volume of phase at reservoir condition

Volume of phase at standard condition
(3.26)

By introducing the volumetric factor B = V
Vs

= ρ
ρs

, equation (3.27) is obtained.

∂

∂t

(
φ

B

)
+ O · 1

B
~v = q (3.27)

3.5 Conservation of Momentum (Darcy’s Law)

Generally, the flow of fluid through a porous medium is modeled by Darcy’s law,

which is an expression of momentum. A fundamental law linking pressure drop

and velocity in fluid flow through porous media is the law of Darcy (Wojciech and

Anna, 2014). Darcy (1856) conducted an experiment on the flow of liquids through

beds of sand and observed that the volumetric flow rate Q is directly related to the

pressure difference between the inlet and the outlet of the medium, cross sectional

area and inversely related to the length of the medium. Mathematically Darcy’s

law states:

Q = c
A

L
4P (3.28)

where the constant of proportionality c is related to 1
µ
, (µ is viscosity). Hence we

have the Darcy’s equation with the absolute permeability K expressed as

Q =
KA

µ

4P
L

(3.29)

Dividing through equation (3.29) by A, equation (3.30) is obtained as:

~v = −K
µ
OP (3.30)
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where ~v is called the Darcy’s velocity. Equation (3.30) represents the case where

flow is horizontal. However in the case where flow is both vertical and horizontal,

we consider pressure change both in the horizontal direction and in depth. This

results in the extended Darcy equation:

~v = −K
µ
O(P + ρgh) (3.31)

where ρ, g and h are respectively density, gravity and height.

3.6 The Two-Phase Flow Model

The two-phase flow model considered in this study assumes no transfer of mass

between the two fluids modeled. If the fluids are immiscible and separated by a

sharp interface, they are referred to as phases. In two phase system, one of the

fluids to be modeled wets the porous medium. The fluid that wets the medium is

referred as the wetting phase, while the other fluid is refered non-wetting phase.

For oil-water system, water is mostly the wetting phase and oil the non-wetting

phase.

Two-phase flow model is no much different from the single phase, however new

concepts are introduced. These include saturation, capillary pressure and relative

permeability

3.6.1 Saturation (S)

Phase saturation is the fraction of the pore space of the porous medium that is

occupied/filled by that phase. For a two-phase system the sum of the saturation

of both the wetting and non-wetting phases is unity: (Knut-Andreas and Bradley,

2016)

sw + so = 1 (3.32)

where subscript w, o indicates the water and oil phase respectively.
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3.6.2 Capillary Pressure (Pc)

As a result of surface tension together with the curvature of the interface between the

two phases inside the small pores, the pressure of the non-wetting phase is greater

than that of the wetting phase. This results in a pressure difference between the

pressures of the fluids concerned given by

pc = po − pw (3.33)

3.6.3 Relative Permeability (Krα)

Relative permeability is the ratio of the effective permeability kα, for flow of each of

the two fluids to the permeability K of the medium at a given saturation. In a case

where a phase does not transition to another, as one phase displaces the other, the

phase saturations change. In the displacement process, the ability for movement of

one phase is affected by its interaction with the other phase. In macroscopic models,

this effect is referred to as the relative permeability. This is dimensionless and a

scaling factor depending on saturation and it modifies the absolute permeability

to count for reduced ability of the rock to transport each phase in the presence of

other phases (Knut-Andreas and Bradley, 2016). It is defined as

krα =
kα
K

α ∈ {o, w} (3.34)

where krα is the relative permeability for phase α, kα is the effective permeability

of phase α and K is the absolute permeability.

Except for the term accounting for the mass of the fluid, the derivation of equation

(3.25) also apply in deriving flow equations for each of the phase. In the two-phase,

the quantity of mass for each phase in a differential volume is the product of the

porosity, the density of the phase and the saturation of the phase. Hence we extend
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equation (3.25), to obtain the continuity equation for two-phase flow as:

∂

∂t
(φραSα) + O · (ρα~vα) = qα, α ∈ {o, w} (3.35)

with

~vα = −Kkrα
µα

O(pα + ραgh) α ∈ {o, w} (3.36)

By combining equation (3.32), (3.33), (3.35) and (3.36), the system of differential

equations that describe the two-phase (oil-water) flow is obtained as

∂

∂t
(φρoSo) + O · (ρo~vo) = qo (3.37a)

∂

∂t
(φρwSw) + O · (ρw~vw) = qw (3.37b)

sw + so = 1 (3.37c)

po − pw = pc (3.37d)

where

~vo = −Kkro
µo

Opo (3.38a)

~vw = −Kkrw
µw

Opw (3.38b)

with the assumption that flow is horizontal and as such there is no gravity effect.

Another signigificant factor in modeling two-phase flow is the phase mobility, which

is the ability of one phase to move with respect to the movement of the other phase.

It is usually denoted as λα, α ∈ {o, w} with the expression

λα =
krα
µα

(3.39)

3.7 Fractional Flow Formulation

According to Yufei et al. (2007), difficulties arise when equation (3.37) with (3.38)

is to be solved simultaneously for the four unknown variables (Sα and pα, α ∈
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{o, w}). The simultaneous solution results in a strongly or fully coupled system.

And according to Yufei et al. (2007), when the implicit scheme is used for the fully

coupled system, long computing time is taken for the simulation process, and it

becomes much difficult if small element sizes and time steps are used for accuracy.

In this study, fractional formulation identical to the fully coupled system is consid-

ered, in order to control the difficulties in simulating fully coupled system. This

formulation can be traced back in the petroleum engineering literature, and uses

the saturation of one of the two phases and a global/total pressure as the dependent

variables. The fractional flow formulation considers the multi-phase flow problem as

a total fluid flow of a single mixed fluid, and describes each phase as a fraction of the

total fluid flow. This approach results into two equations which is the global pres-

sure equation and the saturation equation for one phase (Tore and Eyvind, 2008).

This new system of equations from the fractional flow approach is equivalent to the

fully coupled system.

3.7.1 Pressure Differential Equation

Compressible Fluid Flow

Naturally equation (3.37a-b) is reformulated to obtain a flow equation for pressure

and transport equation for saturation (Knut-Andreas and Bradley). This is done

by expanding the time derivatives in equation (3.37). This results in:

ρwSw
∂

∂t
φ+ φSw

∂

∂t
ρw + ρwφ

∂

∂t
Sw + O · (ρw~vw) = qw (3.40a)

ρoSo
∂

∂t
φ+ φSo

∂

∂t
ρo + ρoφ

∂

∂t
So + O · (ρw~vo) = qo (3.40b)

Dividing through equation (3.40a) by ρw and equation (3.40b) by ρo, putting the two

resulting equations together and using equation (3.37c), equation (3.41) is obtained

∂

∂t
φ+ φSw

1

ρw

∂

∂t
ρw + φSo

1

ρo

∂

∂t
ρo +

1

ρw
O · (ρw~vw) +

1

ρo
O · (ρo~vo) = Qt (3.41)
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where Qt = qw
ρw

+ qo
ρo

Fluid and rock compressibility property is defined as:

cr =
1

φ

∂φ

∂p
cw =

1

ρw

∂ρw
∂p

co =
1

ρo

∂ρo
∂p

(3.42)

Using the definition in (3.42) and cαOpα = 1
ρα
Oρα, α ∈ {o, w} we obtain

φcr
∂p

∂t
+ φSwcw

∂pw
∂t

+ φSoco
∂po
∂t

+ ~vwcwOpw + O~vw + ~vocoOpo + O~vo = Qt (3.43)

Substituting equation (3.38) we obtain

φcr
∂p

∂t
+ φSwcw

∂pw
∂t

+ φSoco
∂po
∂t
− cwOpwKλwOpw − O · (KλwOpw)

−coO(po)KλoO(po)− O · (KλoO(po)) = Qt

(3.44)

Simplifying (3.44), the pressure differential equation for a compressible fluid flow is

obtained as

cw

(
φSw

∂pw
∂t
− OpwkλwOpw

)
+ co

(
φSo

∂po
∂t
− O(po)KλoO(po)

)
+φcr

∂p

∂t
− O · (KλwOpw)− O · (KλoO(po)) = Qt

(3.45)

where λα is the phase mobility of α, cr the rock compressibility cw the wetting phase

(water) compressibility, co the non-wetting phase (oil) compressibility and Qt is a

specific volumetric injection/production rate term (Luna and Hildago, 2015).

Incompressible Fluid flow

In the particular case of an incompressible fluid flow (cr = co = cw = 0), equation

(3.45) becomes

−O · (KλwOpw)− O · (KλoO(po)) = Qt (3.46)

Expressing the total velocity ~v as a function of the global pressure (p) given by
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(Luna and Hildago (2015))

~v = −K(λw + λo)O · p (3.47)

and letting λ = λo + λw, the pressure differential equation for an incompressible

fluid flow is given by

−O · (KλOp) = Qt (3.48)

where λ is the total mobility.

3.7.2 Saturation Equation

In this study, the formulation of the saturation equation is done in terms of the

wetting phase saturation Sw. With the assumption that the two phases (oil and

water) are immiscible is very essential for the fractional formulation. When two

immiscible fluids are in contact, there exists between the two fluids a clearly defined

interface.

3.7.3 Fractional Flow Function

The fractional flow function is used in calculating the fraction of flow of the total

water flow, at any point in the reservoir, with the assumption of a known water sat-

uration at that point. To arrive at the fractional flow formulation for the transport

equation for saturation, a fractional flow function (the ratio of mobility of a phase

to the total mobility) is define as:

fα(S) =
λα
λ

α ∈ {o, w} (3.49)

where

λ = λw + λo (3.50)

The phase mobilities λα α ∈ {o, w} are functions of water saturation hence fα.

Fractional flow function is key in multi-phase flow models, since it describes the
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fraction of flow of the total water flow at any point in the reservoir. A graph of the

fractional flow curve against water saturation is shown in Figure 3.5.

Figure 3.5: The fractional flow curve as a function of Water Saturation

Let ~v be the total velocity defined as

~v = ~vw + ~vo (3.51)

In the case of an incompressible fluid flow, we can write from the mass balance

equation (3.37a-b):

φ
∂

∂t
So + O · ~vo =

qo
ρo

(3.52a)

φ
∂

∂t
Sw + O · ~vw =

qw
ρw

(3.52b)

Formulating the saturation equation in terms of the wetting phase (water), we use

the water saturation equation

φ
∂

∂t
Sw − O · (KλwOpw) =

qw
ρw

(3.53)
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From equation (3.51), we have

~v = −KλoOpo −KλwOpw (3.54)

Substituting for po = pc + pw and solving for Opw, we get

Opw =
−~v −KλoOpc
K(λw + λo)

(3.55)

Now substituting equation (3.55) into (3.53) and using the fractional flow function

in equation (3.49) and simplifying we obtain a convective-diffusive equation:

φ
∂

∂t
Sw + O · (fw~v) + O · (KλofwOpc) =

qw
ρw

(3.56)

where O · (fw~v) is the convective term and O · (KλofwOpc), the diffusive term.

However in the case where capillary pressure is assumed zero, we obtain a hyperbolic

differential equation for saturation.

3.7.4 Residual Saturation

As the reservoir is drained, wetting phase saturation decreases and capillary pres-

sure increases. Finally, a wetting phase saturation is reached, at which point the

saturation does not decrease again. The corresponding wetting phase saturation

(usually greater than zero) is called wetting phase residual saturation Swr. At this

point it is not possible to reduce the wetting phase saturation below residual sat-

uration by pure displacement, however, it can be reduced by phase transition, in

this case vaporization. As the residual saturation is approached a large increase in

capillary pressure produces practically no decrease in wetting phase saturation. It

is this large derivative of the capillary pressure function that will require special

care in the numerical solution. According to Bastian (1999), the effective water

saturation, S̄w with the residual saturations can be defined as:

S̄w =
Sw − Swr

1− Swr − Sor
(3.57)
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The residual saturation in the case of a heterogeneous porous media may depend

on position.

3.7.5 Relative Permeability Functions

Relative permeability is defined as a function of phase saturation. Krα for the two-

phase case has been defined known as Van Genuchten and Brooks-Correy functions.

Van Genuchten Relative Permeability:

The Van Genuchten relative permeability functions for a two-phase system are

written in terms of the residual saturation as

krw = S̄1/2
w

(
1−

(
1− S̄

n
n−1
w

)n−1
n

)2

(3.58)

kro = S̄1/3
o

(
1−

(
1− S̄o

) n
n−1

) 2(n−1)
n

(3.59)

where n ∈ {2, 3, 4, 5}

Brooks-Correy Relative Permeability:

The Brooks-Correy model is an extension of the work done by Burdine (1953). Bur-

dine developed a functional relationship among effective permeability, saturation

and capillary pressure. From this relations, Correy in 1954 proposed the relative

permeability model

krw(Sw) = S̄4
w (3.60)

However in 1964, Correy co-authored with Brooks extended this model to:

krw = S̄
2+3γ
γ

w (3.61)

where γ is found to be related to the distribution of the pore size (Brooks and Cor-

rey, 1964). Equation (3.61) was derived on the basis that equation (3.60) cannot

be valid for all porous media because permeability and saturation are not unique
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functions of capillary pressure, but depends upon the size and arrangement of the

pores. As a result, a general relation is needed between saturation and capillary

pressure that will lead to a wide range of media, leading to equation (3.61). Simi-

larly, relative permeability is defined for the non-wetting phase (oil) as:

kro = S̄2
o

(
1− (1− S̄o)

2+γ
γ

)
(3.62)

The relative permeability curve for the two phases (wetting and non-wetting) as

defined by Brooks and Correy is shown in Figure 3.6

Figure 3.6: Brooks-Correy relative permeability curve for wetting and non-wetting
phase

3.7.6 Capillary Pressure Function

The curved interface between the two phases (wetting and the non-wetting) results

in a pressure difference between the two phases called the Capillary pressure and is

given by

pc(Sw) = po − pw > 0 at the interface
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Van Genuchten in 1980, derived capillary pressure function for two phase water-gas

system which is written in terms of the effective saturation as:

pc(Sw) =
1

α

(
S̄
− 1
m

w − 1
)− 1

n

, m = 1− 1

n
, n ∈ {2, 3, 4, 5} (3.63)

where α is in relation to the entry pressure pd.

Brooks and Correy (1964) defined the capillary pressure function as:

pc(Sw) = pdS̄
− 1
γ

w 0.2 < γ < 3.0 (3.64)

Figure 3.7: A capillary pressure-saturation curve during drainage (Brooks-Correy
Capillary pressure function).

Consider the capillary pressure curve, Figure (3.7), at the point Sw = 1, with 100%

water saturated core sample, the water is gradually displaced by the oil, referred

as a drainage process with the capillary pressure increasing to a value pd without

a noticeable decrease in Sw. At this water saturation (Sw close to zero) there is

an apparent discontinuity at which the saturation of water is not possible to be

reduced further, regardless of the imposed difference in phase (capillary) pressure.
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The value pd is called the entry pressure and it is the critical pressure that must be

applied for the non-wetting phase to enter the largest pores of the porous medium.

If the experiment is reversed, by displacing the oil with water, the process is called

the imbibition process.

According to Dake (1978), drainage and imbibition processes have a considerable

effect on capillary pressure curve for water-oil system where water is the wetting

phase. The plot for the two processes are shown in Figure 3.8. The difference in

the two plots was observe due to hysteresis in contact angle.

Figure 3.8: Drainage and imbibition capillary pressure functions. Source: L. P.
Dakes (1978)

3.8 Model Assumptions

The study of fluid movement in a porous media is more complex. For this reason,

certain assumptions are introduced in order to simplify the complexity of models

developed (Luna and Hildago, 2015). The following assumptions are established:

• The flow of fluid takes place in one direction (one-dimensional).
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• The fluid considered is immiscible with constant composition over time, hence

transfer of mass between the phases is not allowed.

• Incompressible fluids are assumed, meaning density is constant over time.

• Since flow is assumed horizontal gravity effect is neglected.

3.9 The Numerical Schemes

Most simulation problems are difficult to be solved analytically, and must instead be

solved numerically. Many phenomena in nature are described by partial differential

equations involving first and second spatial derivatives and time derivatives of mul-

tidimensional functions. Examples of such equations are Maxwell’s equations, the

heat equation, and the Schrödinger wave equation. Neither differential equations,

integral equations, nor integro-differential equations could be solved symbolically

or analytically, in general. Nevertheless, we want to simulate these phenomena in

order to have insight in these problems. To do so numerical methods are used.

A numerical method for solving a differential equation problem involves discretiz-

ing this problem, with infinitely many degrees of freedom, to produce a discrete

problem, with finitely many degrees of freedom which is possible to be solved by

the use of computers (Zhangxin et al., 2006). Most numerical methods involve an

approximation to the unknown function u by a new function uap which is a linear

combination of basis functions

uap =
n∑
i=1

uiφi(x) (3.65)

where n is the number of basis functions, ui are the unknown coefficients, φi(x) are

the chosen basis functions, and x is the domain variable, possibly multidimensional

(Heckbert, 1993). The finite element and the finite volume methods follow this

technique.
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3.10 The Variational Method or Weak Formula-

tion

To solve a differential equation by the method of variation, the differential equation

is first written in a weighted-integral form, and then an approximate solution for the

problem assumed (Reddy, 1993). In approximating numerically an exact solution

we are typically replacing an infinite expansion with a finite representation. Such

approximation necessarily means that the differential equation cannot be satisfied

everywhere in our region of interest and so we are only able to satisfy a finite number

of conditions. Since the approximate solution is not likely to equal the exact solution

of the differential equation it is likely to have an error in the approximating solution.

Consider the linear differential equation (3.66) in the domain Ω:

L(u) = 0 (3.66)

where L(u) is a differential equation having all non-zero terms at the left hand side

(for example, u′′ + f = 0), subjected to suitable initial and boundary conditions.

The assumption is that the exact solution, ue(x, t) can accurately be represented

by the approximate solution which is of the form:

uap = u0(x, t) +
∑
j∈Is

uj(t)φj(x) Is ∈ {0, 1, 2 . . . N} (3.67)

where φj are analytic functions called trial functions and uj(t) are the N unknown

coefficients and u0(x, t) is chosen to satisfy the initial and boundary conditions.

Substitution of the approximate solution (3.67) into equation (3.66) produces a

non-zero residual R such that

L(uap) = R(uap). (3.68)

When approximating a function, the key idea is to minimize the square norm of
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the approximate error, ue(x, t) − uap(x, t), or to demand that the residual R is

orthogonal to a weight or test function vi(x).

To determine the coefficients uj(t), equation (3.68) is multiplied by a test function

vi(x) orthogonal to the residual R so that

(R(uap), vi(x)) = 0 i ∈ I = {0, 1, 2, . . . N}, (3.69)

where the inner product (g, h) of the two functions g and h over the domain Ω is

expressed as

(g, h) =

∫
Ω

g(x)h(x)dx (3.70)

The weighted residual in the case of (3.69) is said to be zero. The function vi(x) is

the test or weight function defined such that v = 0 on the boundaries of the domain.

Using integration by parts and an appropriate boundary conditions to equation

(3.69) yields the variational or weak form of the differential equation (3.66) which

consist of determining the solution u(x) such that

a(u, v) = l(v) (3.71)

or the problem of looking for the solution u(x) which will minimize the functional

I(u) = a(u, v)− l(v) (3.72)

where a(u, v) is a bilinear functional of first order derivatives and l(v) is a linear

function in terms of the weight or test functions.

Definition 3.10.1 Let X be a vector space. A mapping a : X ×X → R is called

a bilinear form if for arbitrary α, β ∈ R and u,v,w ∈ X the following holds:

a(αu + βv,w) = αa(u,w) + βa(v,w) (3.73)

a(u, αv + βw) = αa(u,v) + βa(u,w) (3.74)
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The bilinear form is symmetric if a(u,v) = a(v,u) holds for all v,u ∈ X

Definition 3.10.2 Let X be a vector space. A mapping l : X → R is linear if for

arbitrary α, β ∈ R and v1,v2 ∈ X

l(αv1 + αv2) = αl(v1) + βl(v2) (3.75)

In looking for an approximate solution to the integrated form of the problem using

the approach of Galerkin or Ritz, one looks for a solution in a finite dimensional

subspace of the true solution space. By the method of Ritz, an approximate solu-

tion that minimizes the functional I(u) is sought to the function. However by the

approach of Galerkin, an approximate solution of (3.71) is directly sought for.

According to George and Spencer (1999), the method of weighted residuals illus-

trates how the choice of different weight (or test) functions in an integral or weak

form of the equation can be used to construct many of the common numerical

methods. A list of the most commonly used test functions and the computational

method they produce is shown in table (3.2).

Table 3.2: Test functions vj(x) used in the method of weighted residuals and the
method produced. Source: (George and Spencer, 1999)

Test Function Type of Method
vi(x) = δ(x− xi) Collocation

vi(x) =

{
1 inside Ωi

0 outside Ωi
Finite Volume (Sub-domain)

vi(x) = ∂R
ui

Least-squares

vi(x) = xi Method of Moments
vi(x) = φi Galerkin
vi(x) = Φj( 6= φi) Petrov-Galerkin
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3.11 The Finite Volume Method

For problems of any finite dimension in continuum, the values of the variables of

interest (whether it is temperature, pressure or any other quantity) are infinitely

many. This is because these variables are functions of each generic point in the

domain or the region of solution. As a result, a continuum problem is one having

an infinite number of unknowns. However, since the problem is best solved by

reducing it to one of a finite number of unknowns, the finite volume and the finite

element discretization techniques are employed. This is achieved by dividing the

solution domain into finite volumes or elements.

A more convenient discretization method for the numerical simulation of different

types of conservation laws such as parabolic, hyperbolic or elliptic type is the finite

volume method. This method has been used considerably in a number of engi-

neering fields including fluid mechanics, mass and heat transfer or in the area of

petroleum engineering. The finite vollume method comes with some important fea-

tures which are similar to some characteristics of the finite element method (Idelsohn

and Onate, 1993) and (Zienkiewicz and Onate, 1990). The finite volume method

may be employed on arbitrary geometries, either by the use of structured meshes

or unstructured meshes, leading to robust schemes. In addition using finite volume

method makes the numerical fluxes locally conservative (that is the flux is conserved

numerically from one discretization cell to its neighbour). The local conservativity

of the finite volume makes it somewhat attractive in modeling problems such as in

fluid mechanics for which much importance is attached to the flux. Since the finite-

volume method is based on a “balanced” approached, it is locally conservative. A

local balance is written on control volumes. Using the divergence formula results in

an integral formulation of the fluxes on the boundaries of the discretized cell. The

boundary fluxes are then discretized in respect of the discrete unknowns.

In one spatial dimension, the finite-volume method basically depends on dividing
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the spatial domain into cells or control volumes making in each of them an ap-

proximation of the integral of the conservative variables. A constant, ūk(t), at the

mid-point, xk, of the control volume defined as [xk−1/2, xk+1/2] approximates the so-

lution of the pproblem u(x, t). For every time step, the values obtained are updated

by approximating the flux at the ends of every interval.

3.12 The Finite Element Method

A numerical technique that can be used in attaining approximate solutions to a

number of problems in the field of engineering is the finite element method. This

method is a direct implementation of the Galerkin (or Rayleigh-Ritz) procedure

with a choice of basis functions (also sometimes called finite element shape func-

tions). After the integral or weak form of the differential equation is formulated, the

finite elements starts by discretizing the entire domain Ω into sub-domains called

finite elements (Courant, 1943). The process of discretizing the domain into finite

elements is called tessellation. With the increase number of sub domains finite ele-

ment method gives an accurate approximate solution.

The approach to finite elements throughout the early period has been variational

(Pelosi, 2007). Rayleigh-Ritz and Galerkin as example of variational methods have

different integral form, weighting functions, and/or approximating functions. Some

difficulties associated with Classical method of variation is the construction of its

approximating functions for any arbitrary domain (Reddy, 1993). Reddy (1993)

discussed the three main features of finite element method giving it superiority over

classical method of variation. Firstly, more complex domains can be broken down

into a collection of simple sub-domains geometrically (hence the name finite ele-

ments). Secondly, approximate functions can be derived with the assumption that

continuous functions can be well-approximated as a linear combination of algebraic

polynomials over the domain of each finite element . Finally, satisfying the govern-

ing equations of each element, the undetermined coefficients are obtained.
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The implementation of finite element method starts with the usage of simple inter-

polation functions as basis functions at the element level after which solution for

the entire domain is represented by assembling associated contributions with every

element.

3.12.1 The Finite Element Basis Functions

The basis functions are piecewise polynomials of low order with compact support.

Denote by φi(x), the finite element basis functions are defined such that they have

the property

φi(xj) = δij =


1 i = j

0 i 6= j

(3.76)

With this property, then for uap(x) =
∑
uj(t)φj(x) we have

uap(xi) =
∑

uj(t)φj(xi) =
∑

ui(t)φi(xi) = ui(t)

which is the value of uap(x) at node xi if the function is independent of time. As a

result, the approximate solution uap(xi) will be non-zero for elements with common

node xj.

3.12.2 One-Dimensional Elements

In a one-dimensional domain [0, L], polynomial elements are defined in terms of a

sequence of element endpoints xi , where 0 = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn = L. This

sequence of elements is a one-dimensional mesh. Constant elements employ a box

basis function that is 1 inside the interval xi ≤ x ≤ xi+1 and 0 outside (see Figure

3.9(a)), defined as;

Box: φi(x) =


1 if xi ≤ x ≤ xi+1

0 otherwise

(3.77)
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Linear elements also employ two half hat basis functions, one that rises from 0 to

1 across the interval, and one which falls from 1 to 0 (see Figure 3.9(b)), defined as

Hat: φi(x) =



x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi if xi ≤ x ≤ xi+1

0 otherwise

(3.78)

Figure 3.9: (a)Box basis function (b) Left and right half hat basis functions.

Quadratic and higher degree elements are common as well. The choice of basis

functions is somewhat arbitrary. The most commonly used basis functions in the

finite element literature are defined in terms of Lagrange interpolation. The degrees

of freedom are chosen to be the value of the function at selected points. Formulas

for these are most easily given in terms of a master element with domain p ∈ [0, L].

This master element can be scaled and translated to map it to any interval using

the transformation x = (xi+1−xi)p−xi. To create a degree d element, d−1 points

are chosen in the master interval, such that 0 < p0 < p1 < . . . < pd = 1. Lagrange

polynomial of degree d, for i = 0, 1, . . . , d is

Ldi (p) =
d∏

j=0,j 6=i

p− pj
pi − pj

(3.79)

Quadratic Lagrange polynomials are shown in Figure 3.10, and a degree d Lagrange

is shown in Figure 3.11.
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Figure 3.10: Basis functions for quadratic Lagrange interpolation.

Figure 3.11: Basis functions for degree d Lagrange interpolation at node i.

This basis function has value 1 at p = pi and value 0 at all other nodes pj. The

box and half hat basis functions given earlier are just the degree 0 and degree 1

Lagrange basis functions respectively.
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Chapter 4

NUMERICAL IMPLEMENTATION OF THE

TWO-PHASE FLOW MODEL

4.1 Problem Formulation

The two-phase flow problem with the effect of capillary pressure is formulated from

equation (3.48) and (3.56) with initial and boundary conditions as:


Find p, Sw ∈ Ω→ R such that

−O · (KλOp) = Qt on Ω

φ ∂
∂t
Sw + O · (fw~v) + O · (KλofwOpc) = qw

ρw
on Ω

(4.1)

with initial conditions

Sw =


0.05 (x = 0)

0 (0 < x ≤ 1km)

and boundary condition


p(0, t) = p(t) on ΓD

−Kλ
(
∂
∂x
p
)
x=l

= Q(t)
A

or ∂n(−KλOp) = g1 = Q(t)
A

on ΓN

where

Qt =
qw
ρw

+
qo
ρo
, λ = λo + λw, with λo =

kro
µo

and λw =
krw
µw

,

the total velocity given by

~v = −K(λo + λw)
∂

∂x
p
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and the fractional flow function given by

fw =
λw

λo + λw
.

In this work, the Brooks-Correy relative permeability function and capillary pres-

sure function is employed for the numerical simulation of the problem. The relative

permeability and capillary pressure functions according to Brooks and Correy are

given respectively by Equation (4.2) and (4.3) as:

krw = S̄
2+3γ
γ

w , kro = S̄2
o

(
1− (1− S̄o)

2+γ
γ

)
(4.2)

and

pc(Sw) = pdS̄
− 1
λ

w 0.2 < λ < 3.0 (4.3)

where S̄α, α ∈ {o, w} is the effective phase saturation defined in Equation (3.57)

with the assumption that the residual saturation is zero, hence S̄w = Sw and S̄o =

So.

In the case where there is no capillary pressure effect, the two-phase problem is

formulated with initial and boundary conditions as:


Find p, Sw ∈ Ω→ R such that

−O · (KλOp) = Qt on Ω

φ ∂
∂t
Sw + O · (fw~v) = qw

ρw
on Ω

(4.4)

with initial conditions

Sw =


0.05 (x = 0)

0 (0 < x ≤ 1km)

(4.5)

and boundary condition
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p(0, t) = p(t) on ΓD

−Kλ
(
∂
∂x
p
)
x=l

= Q(t)
A

or ∂n(−KλOp) = g1 = Q(t)
A

on ΓN

(4.6)

The problem is solved using Finite Element-Finite Volume method and the numer-

ical approximation for the problem is done in 1-dimensional space hence Ou = ∂
∂x
u.

4.2 FE-FV Implementation for the Two-Phase Prob-

lem With Capillary Pressure Effect

To solve problem (4.1), the elliptic pressure equation is approximated by the Finite

element method and the advective-diffusive saturation equation solved using the

Finite Volume Method.

4.2.1 Weak Formulation for the Pressure Equation

To solve the pressure equation with the Finite element method, the problem in the

strong form is first written in a weak or variational form. To write the problem

in the weak form, the Neumann boundary condition and the pressure differential

equation are multiplied by a test function v from which equation (4.7) and (4.8)

are obtained. ∫
Ω

[O · (KλOp) +Qt] vdΩ = 0 (4.7)

∫
Ω

[∂n(KλOp) + g1] vdΩ = 0 (4.8)

Greens theorem states that

∫
Ω

O(Ou)v +

∫
Ω

OuOv =

∫
Γ

(∂nu)v. (4.9)
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Using the Greens theorem, results in (4.10)

∫
Γ

∂n(KλOp)vdΓ−
∫

Ω

(KλOp)OvdΩ +

∫
Ω

QtvdΩ = 0 (4.10)

Define the following spaces

L2(Ω) = {f : Ω→ R|
∫
|f |2 <∞}

H1(Ω) = {u ∈ L2(Ω)|Ou ∈ L2(Ω)}

H1
0 (Ω) = {u ∈ H1(Ω)|u = 0 on ΓD}.

Using the Neumann boundary condition, and the fact that the test function must

satisfy homogeneous condition on the Dirichlet boundary (i.e. v = 0 on ΓD ),

equation (4.10) becomes

∫
Ω

(KλOp)OvdΩ =

∫
Ω

QtvdΩ−
∫

ΓN

g1vdΓ (4.11)

Now the weak form of the pressure equation for problem (4.1) is written as


Find p ∈ H1(Ω) such that

p(0, t) = p(t) on ΓD∫
Ω

(KλOp)OvdΩ =
∫

Ω
QtvdΩ−

∫
ΓN
g1vdΓ ∀v ∈ H1

0 (Ω).

(4.12)

4.3 Well-posedness of the Problem

Well-posedness means the existence and uniqueness of solution and the continuity

of the solution with respect to the data (the initial and boundary conditions and

the right hand side of the pde). In the sense of Hadamard, a partial differential

equation (pde) is well posed iff

1. There exist a solution

2. The solution to the pde is unique
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3. Solutions depends on the data (the initial and boundary conditions and the

right hand side of the pde)

Existence and uniqueness involves boundary conditions. If the pde has too many

boundary conditions, the solution may not exist and if the the boundary conditions

are too few, solution may not be unique.

4.3.1 Lax-Milgram Lemma

Lax-Milgram Lemma is a basis and most important tool for proving the existence

and uniqueness of solution to elliptic problems.

Theorem 4.3.1 (Lax-Milgram) Let V be a Hilbert Space, a : V × V → R a

bounded V−elliptic bilinear form and l be a linear form. Assume that

1. a is continuous, i.e., there exists a constant C > 0 such that

|a(u, v)| ≤ C ‖u‖V ‖v‖V ∀u, v ∈ V (4.13)

2. a is V−elliptic, i.e., there exists a constant C > 0 such that

a(v, v) ≥ C ‖v‖2
V ∀v ∈ V (4.14)

3. The linear form l is continuous, i.e., there exists a constant C such that

l(v) ≤ C ‖v‖V ∀v ∈ V (4.15)

Then there exists a unique solution to the problem: Find u ∈ V such that

a(u, v) = l(v) for all v ∈ V (4.16)

Definition 4.3.1 (Dirichlet-Poincare’s Inequality) If u : Ω→ R and u ∈ V =

H1
0 (Ω), then ∫

Ω

|u|2 ≤ CΩ

∫
Ω

|Ou|2 where CΩ > 0 (4.17)
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4.3.2 Verification of the Conditions of Lax-Milgram Lemma

To verify the conditions of Lax-Milgram Lemma, rewrite equation (4.12) in one

spatial dimension with homogeneous Dirichlet condition in the form; Find u ∈ V

such that

a(u, v) = l(v) and p− p(t) = u = 0 on ΓD for all v ∈ H1
0 (Ω) (4.18)

where the bilinear form is:

a(u, v) =

∫ L

0

(
Kλ

∂

∂x
u

)
∂

∂x
vdx (4.19)

and the linear form l(v), is given by:

l(v) =

∫ L

0

Qtvdx−
∫

ΓN

Q(t)

A
vdΓ +

∫ L

0

Kλ
∂

∂x
p(t)

∂

∂x
vdx (4.20)

1. Continuity and boundedness of a:

From the bilinear form,

|a(u, v)| =
∣∣∣∣∫ L

0

(
Kλ

∂

∂x
u

)
∂

∂x
vdx

∣∣∣∣ ≤ ∫ L

0

∣∣∣∣(Kλ ∂∂xu
)

∂

∂x
v

∣∣∣∣ dx (4.21)

By Hölder’s Inequality, we have

|Kλ|
∫ L

0

∣∣∣∣( ∂

∂x
u

)
∂

∂x
v

∣∣∣∣ dx ≤ |Kλ|
(∫ ∣∣∣∣ ∂∂xu

∣∣∣∣2 dx
)1/2(∫ ∣∣∣∣ ∂∂xv

∣∣∣∣2 dx
)1/2

(4.22)

In particular, if g is in the Hilbert space V , then

‖g‖2 =

(∫ L

0

|g|2dx
)1/2

(4.23)

This implies that

|a(u, v)| ≤ |Kλ| ‖u‖1,2 ‖v‖1,2 (4.24)
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Hence a(u, v) is bounded for u, v ∈ V

2. Positivity:

It is obvious that

a(v, v) =

∫ L

0

Kλ
∂

∂x
v
∂

∂x
vdx ≥ 0 for all v ∈ V

For a(v, v) strictly positive, it is obvious that

a(v, v) =

∫ L

0

Kλ
∂

∂x
v
∂

∂x
vdx > 0 iff 0 6= v ∈ V

3. V -elliptic (coercive):

Assume that kλ is strictly positive, from the bilinear form we have

a(v, v) =

∫ L

0

Kλ

∣∣∣∣ ∂∂xv
∣∣∣∣2 dx = kλ

∫ L

0

∣∣∣∣ ∂∂xv
∣∣∣∣2 dx (4.25)

From Dirichlet-Poincaré’s inequality,
∫

Ω
|Ou|2 ≥ 1

CΩ

∫
Ω
|u|2. Hence

a(v, v) = Kλ

∫ L

0

∣∣∣∣ ∂∂xv
∣∣∣∣2 dx ≥ Kλ

CΩ

∫ L

0

|v|2 dx =
Kλ

CΩ

‖v‖2
1,2 (4.26)

Hence a is V−elliptic

4. Finally, it is shown that l(v) is continuous:

|l(v)| ≤
∣∣∣∣∫ L

0

Qtvdx

∣∣∣∣+

∣∣∣∣∫
ΓN

Q(t)

A
vdΓ

∣∣∣∣+

∣∣∣∣∫ L

0

Kλ
∂

∂x
p(t)

∂

∂x
vdx

∣∣∣∣ (4.27)

≤
∫ L

0

|Qtv| dx+

∫
ΓN

∣∣∣∣Q(t)

A
v

∣∣∣∣ dΓ +

∫ L

0

∣∣∣∣Kλ ∂∂xp(t) ∂∂xv
∣∣∣∣ dx (4.28)

≤ ‖Qt‖L2 ‖v‖1,2 + |A|−1 ‖Q(t)‖L2 ‖v‖1,2 +Kλ ‖p(t)‖L2 ‖v‖1,2 (4.29)

= (‖Qt‖L2 + |A|−1 ‖Q(t)‖L2 +Kλ ‖p(t)‖L2) ‖v‖1,2 (4.30)
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Hence

|l(v)| ≤ (‖Qt‖L2 + |A|−1 ‖Q(t)‖L2 +Kλ ‖p(t)‖L2) ‖v‖1,2 (4.31)

Consequently, the solution to the weak form (4.12) is unique and bounded in H1
0 (Ω)

4.3.3 Finite Element Implementation for Pressure Equa-

tion

The finite element formulation continues after the weak form (equation 4.12) of

the problem is obtained by first discretizing the domain, Ω, into sub-domains, Ωi

(finite elements). Let the entire domain Ω be discretized into sub-domains Ωi (finite

elements). Define a space of functions Vh given by

Vh = {uh ∈ L2(Ω)|Ouh ∈ L2(Ω)}

and V ΓD
h ⊂ Vh given by

V ΓD
h = {u ∈ Vh|u = 0 on ΓD}

This results in the discrete problem


Find ph ∈ Vh such that

ph(0, t) = p(t) on ΓD∫
Ω

(KλOph)OvhdΩ =
∫

Ω
QtvhdΩ−

∫
ΓN
g1vhdΓ ∀vh ∈ V ΓD

h

(4.32)

From the solution space Vh, let vh = φj(x) ∈ V ΓD
h be finite element basis function

defined on the nodes for each element. Again let the approximate solution be the

linear combination

ph(x, t) = p(t) +
N∑
i=1

φi(x)pi(t)

where pi(t) are the nodal values of pressure varying with time and φi(x) the nodal
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basis functions. The term p(t) is to account for the Dirichlet boundary condition.

Substituting vh, ph(x, t) and g1 into (4.32) and simplifying results in the linear

system of equation

N∑
i=1

(∫
Ω

KλOφi(x)Oφj(x)

)
pi(t)dΩ =

∫
Ω

Qtφj(x)dΩ−
∫

ΓN

Q(t)

A
φj(x)dΓ (4.33)

which can be written in a more compact way as

KλMijpwi(t) = bj j = 1, 2, . . . , N (4.34)

where

Mij =
N∑
i=1

∫
Ω

Oφi(x)Oφj(x)dΩ and bj =

∫
Ω

Qtφj(x)dΩ−
∫

ΓN

Q(t)

A
φj(x)dΓ

4.3.4 FVM for the Saturation Equation with Capillary Pres-

sure Effect

The Saturation profile with the effect of capillary pressure is formulated as

φ
∂

∂t
Sw +

∂

∂x
(fw~v) +

∂

∂x

(
Kλofw

∂

∂x
pc

)
=
qw
ρw

on Ω (4.35)

with initial conditions

Sw =


0.05 (x = 0)

0 (0 < x ≤ 1km)

In proving for the existence and uniqueness of the saturation equation, an energy

estimate for the saturation is derived (see (Schroll and Tveito, 2000)). Schroll and

Tveito (2000) in their study, proved for the local existence and uniqueness for the

saturation equation. Consequently, the existence and uniqueness of the saturation

equation with the capillary pressure.

To solve the saturation equation by Finite volume method, the domain is discretized
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into several sub-cells Si = {xi−1/2, xi+1/2} called control volume and write

∫ x1+1/2

xi−1/2

φ
∂

∂t
Swdx+

∫ x1+1/2

xi−1/2

∂

∂x
(fw~v) dx+

∫ x1+1/2

xi−1/2

∂

∂x

(
Kλofw

∂

∂x
pc

)
dx =∫ x1+1/2

xi−1/2

qw
ρw
dx

(4.36)

Let 4x be the cell length. Dividing through by 4x gives

φ
1

4x

∫ x1+1/2

xi−1/2

∂

∂t
Swdx+

1

4x

∫ x1+1/2

xi−1/2

∂

∂x
(fw~v) dx+

1

4x

∫ x1+1/2

xi−1/2

∂

∂x

(
Kλofw

∂

∂x
pc

)
dx =

1

4x

∫ x1+1/2

xi−1/2

qw
ρw
dx

(4.37)

This is rewritten as

φ
d

dt

∫ x1+1/2

xi−1/2

1

4x
Swdx+

1

4x

(
fw(Swi+1/2

)vi+1/2 − fw(Swi−1/2
)vi−1/2

)
+

1

4x

[(
Kλofw

∂

∂x
pc

)
xi+1/2

−
(
Kλofw

∂

∂x
pc

)
xi−1/2

]
=
qw
ρw
.

(4.38)

Writing ∂
∂x
pc
∣∣
xi−1/2

=
pci−pci−1

4x and ∂
∂x
pc
∣∣
xi+1/2

=
pci+1−pci
4x results in

φ
d

dt

∫ x1+1/2

xi−1/2

1

4x
Swdx+

1

4x

(
fw(Swi+1/2

)vi+1/2 − fw(Swi−1/2
)vi−1/2

)
+

1

4x

[
Kλofw(Swi+1/2

)
pc(Swi+1

)− pc(Swi)
4x

−Kλofw(Swi−1/2
)
pc(Swi)− pc(Swi−1

)

4x

]
=
qw
ρw

(4.39)

Let Swi =
∫ x1+1/2

xi−1/2

1
4xSwdx be the cell average. This represents the value of Sw at

node i. Using forward difference for the time derivative of Sw, gives

φ
Sn+1
wi
− Snwi
4t

+
1

4x

(
fw(Swi+1/2

)vi+1/2 − fw(Swi−1/2
)vi−1/2

)
+

1

4x

[
Kλofw(Swi+1/2

)
pc(Swi+1

)− pc(Swi)
4x

−Kλofw(Swi−1/2
)
pc(Swi)− pc(Swi−1

)

4x

]
=
qw
ρw

(4.40)

Consequently, making Sn+1
wi

the subject, the finite volume implementation for the
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saturation equation with the effect of capillary pressure is obtained as

Sn+1
wi

= Snwi −
4t
φ4x

(
fw(Swi+1/2

)vi+1/2 − fw(Swi−1/2
)vi−1/2

)
− 4t
φ4x

[
Kλofw(Swi+1/2

)

pc(Swi+1
)− pc(Swi)
4x

−Kλofw(Swi−1/2
)
pc(Swi)− pc(Swi−1

)

4x

]
+
4t
φ

qw
ρw
.

(4.41)

However, in the case where the capillary pressure is considered negligible, modeled

by equation (4.4), the corresponding finite volume implementation for the saturation

equation is obtained as

Sn+1
wi

= Snwi −
4t
φ4x

(
fw(Swi+1/2

)vi+1/2 − fw(Swi−1/2
)vi−1/2

)
+
4t
φ

qw
ρw
. (4.42)

Upwind Scheme

The upwind scheme is used for advection dominated problems. It allows us to find

the saturation values at the grid points instead of the interface. Since Swi−1/2
are

the interface values of the saturation, they need to be expressed in terms of the cell

averages (evaluated at the grid points) by using the upwind scheme. As a result,

Swi+1/2
and Swi−1/2

are then expressed in terms of the cell averages by the upwind

schemes respectively as:

Snwi+1/2
=


Swi if v(xi, t

n) > 0

Swi+1
if v(xi, t

n) < 0

(4.43)

and

Snwi−1/2
=


Swi−1

if v(xi, t
n) > 0

Swi if v(xi, t
n) < 0

(4.44)

4.3.5 Courant-Friedrichs-Lewy (CFL) Condition

Since the saturation scheme for both cases (i.e., Saturation equation with and with-

out Capillary effect) in the finite volume approach is explicit, its stability is impor-
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tant. Hence the Courant-Friedrichs-Lewy (CFL) condition must be applied. CFL

is a necessary condition for convergence while solving partial differential equations

by the method of finite difference. It arises in the numerical analysis of explicit

time integration scheme. The CFL condition has the form:

C =
4t
4x
≤ Cmax (4.45)

For explicit schemes, 4t and 4x are chosen such that Cmax = 1. However for

implicit schemes larger values of Cmax may be tolerated since implicit schemes are

less sensitive to numerical instability.

4.3.6 Approach to Solving the Coupling Pressure-Saturation

Equation

The pressure and saturation equations are solved following a similar strategy em-

ployed by Luna and Hildago (2015)

Step 1: The pressure equation is solved using the FEM, beginning with initial wa-

ter saturation profile: sw(x, 0), considering the intervals [xi, xi+1] as finite

elements. The nodal values for the pressure, pi, are calculated.

Step 2: From the Darcy’s law (Equation 3.38b), the velocity values are computed at

each node xi from pi. The pressure gradients are evaluated by the use of

a reconstruction procedure by Luna and Hildago (2015). The slope for the

pressure was chosen according to: |mi| = min(|mi,−1|, |mi,1|) where mi,−1 =

pi−pi−1

4x and mi,1 = pi+1−pi
4x

Step 3: The interface fluxes are computed from the nodal values of the velocity by

introducing the interface velocities in fw(Si+1)vi+1.

Step 4: These fluxes are then substituted into the saturation equation to solve for the

saturation using the initial saturation profile to evaluate the capillary terms.
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Chapter 5

NUMERICAL RESULTS, DISCUSSION AND

CONCLUSION

5.1 Numerical Results and Discussion

The numerical results obtained in this work for the problem without the capillary

effect (equation 4.4) are shown in Figure 5.1-??. These results illustrate the pressure

and saturation profile for the two-phase flow model without the capillary pressure

effect.

Naturally fluids flow from a region of high pressure to a region of low pressure.

From the results, it is observed that the reservoir pressure evolves at initial time

t = 0, from an initial value of about 185.646 bar at the end of the reservoir (x = 1)

to 125 bar at (x = 0) (satisfies the boundary condition at x = 0 at time zero).

With a higher pressure 185.646 bar applied at the end x = 1 of the reservoir, it

is observed that the pressure declines from the end of the reservoir (x = 1) to the

well-bore (x = 0) hence flow of fluid is towards the well-bore as expected. Finally,

it is also observed that the pressure profile decreases with time. This is evident in

Figure 5.2.

In imbibition process, where oil is being displaced (i.e., oil production) by water, it

is expected that, oil saturation should be decreasing with time for increasing water

saturation. And since the reservoir is completely filled by the fluid in place, it is

expected that the oil and water saturation sum to one at any particular time.

From the numerical results obtained from the saturation profiles of both oil and
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(a) Pressure Profile at t=0 (b) Pressure Profile at t=0.25

(c) Pressure Profile at t=0.50 (d) Pressure profile at t=1.0

Figure 5.1: Plot showing the Pressure profile, (p) along the distance for different
time values

Figure 5.2: Pressure profile at t=0(Blue), t=0.25(Red), t=0.5(Magenta),
t=1(Green)
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Figure 5.3: Surface plot of Pressure profile (p)

water as shown in Figure ?? and 5.4, it can be observed that the two profiles

exhibits the expected behavior for imbibition process. Comparing both profiles

from Figure 5.4, at a particular time t, it is evident that the sum of the saturation

values for oil and water is 1, and also as the water saturation increases from t0 to

t1, the oil saturation decreases correspondingly.

Figure 5.4: Plot showing the saturation profile (Sw, So) of water and oil along the
distance for different time values
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5.2 Investigating the Effect of Capillary Pressure

5.2.1 Capillary Pressure Effect on Flow Rate

According to Dake (1978), the fractional flow equation (without gravity effect) for

the displacement of oil by water, in one dimension is given by:

fw =
1 + kkroA

qtµo

∂pc
∂x

1 + µw
krw
· kro
µo

(5.1)

The effect of the capillary pressure gradient term ∂pc
∂x

, could be understood qualita-

tively by rewriting the gradient term as

∂pc
∂x

=
∂pc
∂Sw

· ∂Sw
∂x

(5.2)

Figure 5.5: (a) Capillary pressure function ; (b) water saturation distribution as a
function of distance in the displacement path. (Source: L. P. Dakes, 1978)

From Figure 5.5(a), the slope of the capillary pressure curve, ∂pc
∂Sw

, is negative as well

as the slope of the water saturation profile in respect to flow direction . Therefore

∂pc
∂x

will be positive at all time, hence the capillary pressure gradient term present

increases the fractional flow of water.
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5.2.2 Capillary Pressure Effect on Saturation Profile

Fluid flow in a reservoir can be advective, diffusive or both advective and diffusive

in nature. Advection is the motion of particles along the bulk flow. Diffusion is the

net movement of particles from high concentration to low concentration. In order to

investigate the effect of capillary pressure on fluid flow, numerical simulation of the

two-phase flow model with the capillary pressure effect was investigated considering

two different cases. Under the two situations, the reservoir model was run under

the same reservoir conditions.

Case 1 (Diffusion Dominated Flows): In order to demonstrate the capillary pressure

effect on saturation in diffusive dominated flows, we set v = 0 in the transport

equation (4.1b) of the model problem. In our model, flow of fluid by diffusion is

accounted for by the diffusive term which has the capillary pressure function, (pc).

The results indicate that, capillary pressure is the main drive of fluids in diffusion

processes which is made evident in (Figure5.6a).

Figure 5.6: Fluid flow by diffusion (pc 6= 0)

Case 2 (Flow by advection and diffusion): Secondly, to investigate the capil-

lary pressure effect on fluid transport in advective flows, the transport equation
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was solved numerically with the diffusive term. The numerical simulation for the

advection-diffusion equation (4.1b) was run and the result compared to the satura-

tion profile without the diffusive term (capillary pressure) under the same reservoir

conditions.

(a) Fluid flow by advection and diffusion
(pc 6= 0) (b) Fluid flow by advection (pc = 0)

Figure 5.7: Comparison of Saturation (Sw) profile for fluid flow by advec-
tion/diffusion with advection

It is observed that, the distribution for the saturation profiles in these two situations

(i.e., advection-diffusion and advection only) are notably different near the well-bore

- which is as a result of the presence of the capillary pressure term - but has similar

behavior as one moves further away from the well-bore.

5.3 Conclusions

In this work, we have demonstrated the effect of capillary pressure on the two-phase

flow model. The two-phase fluid flow model with the effect of capillary pressure

was successfully modeled resulting into a non-linear system of partial differential

equations which was reformulated to obtain an elliptic partial differential equation

for pressure, a parabolic or convective-diffusive equation for saturation using the

fractional flow formulation. This new formulation enabled effective simulation of

the flow model under capillary pressure conditions by allowing us to employ two

different methods - finite element and the finite volume methods - for the descriti-
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zation of the pressure and the saturation equation.

The capillary pressure effect on the saturation profile was further studied in this

work by considering two cases - diffusion dominated case and advection-diffusion

case. From the findings it was observed that in situations where flow of fluid in

a reservoir is dominated by diffusion, the advance of fluid is mainly by the effect

of capillary pressure. Finally, in a situation where flow is by both advection and

diffusion, the capillary pressure is to be considered for dynamic processes where

saturation gradient is large. However for dynamic processes where there is little or

no saturation change, the capillary pressure can be considered negligible or zero.

According to literature, porosity φ, and permeability K, which were assumed con-

stant in this study, are discontinuous functions in real cases, which in effect could

have some level of influence on fluid transport. Hence for further studies, the ef-

fect of these reservoir properties, porosity and permeability, can be investigated to

explore their effect on fluid dynamics in a porous medium.

5.4 Recommendation

Reservoir properties such as porosity φ, and permeability K, may as well have some

influences on fluid transport in a porous medium. According to literature, porosity

and permeability which were assumed constant in this study, are discontinuous

functions in real cases, which in effect could have some level of influence on fluid

transport. Hence for further studies, the effect of these reservoir properties, porosity

φ and permeability K, can be investigated to explore their effect on fluid dynamics

in a porous medium.
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