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Abstract

Sign language is one of the most natural and raw forms of language and communica-

tion. which could be dated back to as early as the advent of the human civilization,

when the first theories of sign languages appeared in history. This thesis presents

an approach to recognize hand spelling gestures to aid the deaf/mute communicate

with non-signers. Images were captured using a computer camera. Skin/hand ar-

eas were segmented out of the images using color, rotated onto their principal axis

by the method of moments and transformed into a PCA feature space for gesture

feature identification and characterization. Data was trained in this system and sub-

sequently test data was classified using a single space euclidean classifier and a single

space Mahalanobis classifier which utilized the Euclidean and Mahalanobis distances

respectively. The two classifiers are compared for their accuracy and efficiency. The

results of the work indicated that the single space Mahalanobis Classifier performed

better than the single space euclidean classifier especially as the number of principal

components increased. The number of principal components selected also greatly

affected the accuracy of classification, with more principal components introducing

noise in the images.
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Chapter 1
INTRODUCTION

1.1 Background

Human gestures constitute a space of motion expressed by the body, face, and/or

hands. Among a variety of gestures, hand gesture is the most expressive and the most

frequently used. A gesture is defined as a movement of part of the body, especially

a hand or the head, to express an idea or meaning[The Oxford Dictionary]. It can

also be said to be an action performed to convey a feeling or intention. As humans,

communication is done with our voices. Other parts of the body such as our limbs

and face are used to make various gestures. In a few decades, many attempts have

been made to create systems with the concept of computer vision to understand

and interpret gestures. Sign languages in the form of hand gesture is the main form

of communication among the deaf and the hearing-impaired. This perhaps can be

attributed to the fact that, There are special rules of context and grammars that

support each expression.

Gesture based communication is a standout amongst the most normal and crude

types of dialect and correspondence. Gesture based communication goes back to

the early approach of the human development; from the fifth century BC,when the
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principal composed records of communication through signing are recorded ever. It

has utilized even before talked dialect/correspondence developed. From that point

forward, the gesture based communication has developed and been received as a ba-

sic piece of our everyday correspondence forms. Presently, communications through

signing are being utilized widely in worldwide sign language for the deaf and dumb,

in the realm of games, for religious practices and furthermore at work places [Rockett

(2003)]. Gestures are one of the main types of correspondence when a baby figures

out how to express its requirement for nourishment, warmth and solace. It improves

the accentuation of talked dialects and aides in communicating considerations and

sentiments successfully. A basic signal with one hand has a similar importance ev-

erywhere throughout the world and means either ”greetings” or ’farewell’. Many

individuals go to remote nations without knowing the official dialect of the went by

nation and still figure out how to perform correspondence utilizing motions and com-

munication through signing. These cases demonstrate that gestures can be viewed

as worldwide and utilized everywhere throughout the world. In various occupations

around the globe, gestures are method for correspondence [Gupta and Ma (2001)].

In the air terminal for instance, a predefined set of signals make individuals on the

ground ready to speak with the pilots and in this manner offer bearings to the pilots

of how to get on and off the run-way and the arbitrator in any game uses gestures to

convey his choices. Hearing disabled individuals have throughout the years built up

a gestural dialect where every single characterized signal have an alloted meaning.

The dialect permits them to speak with each other and the world they live in.

Sign comprises of three fundamental parts: Manual components including signals

made with the hands (utilizing hand shape and movement to pass on significance),

Non-manual elements, for example, facial expressions or body pose, which can both

frame some portion of a sign or change the meaning of a manual sign, and Finger

spelling, where words are spelled out by motions in the local verbal dialect. Actually

2



this is an oversimplification, Sign language is as intricate as any talked dialect, each

communication through signing has a huge number of signs, each varying from the

following by minor changes in the shape of the hand, movement, position, non-manual

features or setting. Since signed languages advanced alongside talked dialects, they

don’t mimic each other.

Ghanaian Sign Language(GSL) is the national gesture based communication of deaf

individuals in Ghana, slipped from American Sign Language. It was presented in

1957 by Andrew Foster, a deaf African-American teacher, as there had been no

instruction or associations for the deaf already. Ghanaian Sign Language(GSL) is

not related to indigenous Ghanaian gesture based communications, for example,

Adamorobe Sign Language Adamorobe Sign Language (AdaSL) is a town gesture

based communication utilized as a part of Adamorobe, an Akan town in eastern

Ghana. It is utilized by around 1370 deaf individuals (2003).

The Adamorobe people group is prominent for its uncommonly high occurrence of

innate deafness (hereditary passive autosome). As of (2012) around 1.1% of the

aggregate populace is deaf, yet the rate was as high as 11% in 1961 preceding the

local chief forbade deaf individuals from wedding equally deaf. Deaf individuals are

completely incorporated into the town’s life.

Under these conditions, AdaSL has created as an indigenous gesture based commu-

nication, completely free from the nation’s standard Ghanaian Sign Language(GSL)

;which is identified with American Sign Language.

The recognition of signed gestures to words and sentences as they do in American

Sign Language without a doubt speaks to the most troublesome recognition issue

of those applications spoken of earlier. A working gesture based communication

framework could give a chance to the deaf to speak with non-signing individuals

without the requirement for a mediator. It could be utilized to create discourse or

content making the deaf more independent.

3



While the automation of spoken speech recognition has now progressed to the point

of being financially accessible, programmed Sign Language Recognition is still in its

earliest stages. Right now most commercially available interpretation services are

human based, and consequently costly, because of the experienced people required.

There are different strategies for communication via gestures recognition. Some

utilize electronic glove while other utilize vision based approach.

Be that as it may, as the electronic glove approach is the more costly one, vision

based approach is generally utilized.

1.2 Motivation

The recognition of gestures to words and sentences as they do in Ghanaian/Amer-

ican Sign Language without a doubt speaks to the most troublesome recognition

issue of those applications said above. Advancement of a framework that perceives

straightforward hand spelling gestures/signs will ease correspondence between the

deaf/mute and non-signers.

1.3 Problem Statement

Deaf and mute individuals have found it difficult communicating with non-signers

over the years since the development of sign language in the country. In public

institutions they are found unable to communicate their needs. It is expensive to

train individuals in sign language to cater for their needs in public places like libraries

and banks and equally expensive for the deaf/mute to have a dedicated interpreter

when they need to communicate with non-signers.

1.4 Objective

The objective of this study are:
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1. to develop a functioning system that can recognize finger spelling gestures

2. to test the performance of euclidean classifier and the mahalanobis classifier

both in single space.

1.5 Outline of the Methodology

The following outlines the method employed in achieving the objective of the thesis:

1. Detection and extraction of skin regions in acquired images

2. Image vectors are constructed and reduced into a PCA feature space

3. Data is trained with training and test data is classified using the euclidean and

mahalanobis classifiers

1.6 Justification of the Study

A working gesture based communication framework could give a chance to the deaf to

speak with non-signing individuals without the requirement for a mediator. It could

be utilized to produce audio discourse or text making the deaf more independent.

1.7 Organization of Chapters

Chapter 1 introduces the concepts of gestures, sign language and sign language recog-

nition. It emphasizes the problem statements and states clearly the objectives of this

study.

Chapter 2 discusses previous works related to this study

Chapter 3 explicitly discusses the methodology of this work. It explains image

processing techniques used in this study; color extraction, hand region segmenta-

tion,feature extraction and classification using Principal Components Analysis.

5



Chapter 4 displays the results of the process of image analysis and feature classifica-

tion discussed in Chapter 3.

Chapter 5 Concludes the study and provides recommendations for future references.

6



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This discussion of related work concentrates on past work in gesture based commu-

nication recognition. Many early sign language recognition systems used markers

or marked gloves to elude the problem of complex backgrounds. Glove-based signal

systems however require the client to wear a bulky gadget, and by and large convey

a heap of cables that hook up the gadget to a PC. This is also known as the sen-

sor based detection These systems directly acquired specific data of the hands using

data gloves and accelerometers. In [Waldron and Kim (1995)] used the Polhemus

tracker to collect data from the data gloves and [Vogler and Metaxas (1999)] used the

DataGlove sensonr to do such in. Such utilization of sensors implied the component

extraction process was avoided since estimations, for example, hand as well as arm

joint edges and spatial position acquired from the sensors were adequate to be uti-

lized as features as was done by [Gao et al. (2000)] The use of gloves usually altered

the signs performed due to the load of cables interfacing the gloves to a computer.

[Dipietro et al. (2008)] given an extensive study of glove-based frameworks. Thirty

sorts of gloves were talked about, illustrating their attributes and applications. These
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incorporated the SayreGlove, MIT LED Glove, Digital Entry DataGlove, Cyber-

Glove, and the Power-Glove, among others. The writers inferred that the DataGlove

and the CyberGlove were the most normally utilized gloves for communication via

gestures recognition.

Data gloves/digital gloves have been utilized broadly in earlier research. [Kadous

(1996)] revealed a framework utilizing gloves to perceive an arrangement of discon-

nected Australian signing gestures with 80% precision.

[Lee and Xu (1996)] built up a glove-based gesture recognition framework that could

perceive 14 of the characters from the handspelling gestures in the right sequence,

adapt different signals and be ready to amend the template of every motion in the

framework in online mode, with at a frequency of 10Hz. Consistently sophisticated

gloves and gadgets have undergone development, for example, the ”Sayre Glove”,

”Dexterous Hand Master” and ”PowerGlove” [Watson (1993)]. By a long shot the

VPL DataGlove is the most successful commercially available glove.

By and large most completely intuitive hand signal frameworks can be considered to

include three essential levels: the detection level, tracking and recognition level. The

tracking layer characterizes and removes visual components which could be ascribed

to the existence of hands in the field of perspective of the catching camera. The as-

sociation of data between successively captured frames is performed by the tracking

layer of the framework. This records movement of the hands through progressive

frames of images. Finally, the recognition layer is in charge of collection the informa-

tion removed in the preceding layers, gathering and assigning names that will label

them to specific classes of motions/gestures.
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2.2 Detection

The essential step in gesture frameworks is the recognition of hands, detection and re-

moval of the regions of interest. This selection of the region of interest(segmentation)

is an extremely important step since it separates the information relevant to the

recognition from the picture background,before it is passed to subsequent tracking

level and then to a recognition phase. Countless strategies suggested in the writing

use a few sorts of visual elements and, as a rule, a blend of them. These elements in-

clude the color of skin pigment, outline, movement and objective figures of the palm.

[Cote et al. (2006)], discusses various hand segmentation and does a comparison of

their performance.

2.2.1 Color

The segmentation of the color of the skin has been used in some methodologies for

locating the hand. A noteworthy choice in the thinking of a model for the colour of

the skin is the choice of the color space to be utilized. There are some proposed color

spaces which include ”RGB”, ”standardized RGB”, ”HSV”, ”YCrCb”, ”YUV”, and

so forth. ”Luminance” (intensity or value) and chrominance (hue data) are the two

components of a color signal. The favored color spaces are the ones that proficiently

isolate the ”chromaticity” and ”luminance” information of the color signal. This is

because of the way that by utilizing color spaces that do not have ”chromaticity-

luminance” independence parts of the color signal only, a level of invariability to

brightening conditions could be accomplished. An analysis of various models of skin

”chromaticity” was done in Terrillon et al. (2000).Their performances were further

assessed

To greatly improve the robustness against variations in brightness a few techniques

Martin and Crowley (1997), executed their work using the HSV space[Saxe and
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Foulds (1996)], YCrCb [Chai and Ngan (1998)], YUV [Yang et al. (1998), Argyros

and Lourakis (2004b)], or normalized RGB used by [Soriano,2003] colorspaces, so as

to estimate the ”chromaticity” of skin (or, generally, how much light in absorbs) in-

stead of the skin’s obvious chromatic value. These methods commonly do away with

the ”luminance” part, to reduce the effects of shadows, brightness and illumination

changes, and in addition regulations of the direction of the skin surface in respect to

the source(s) of light.

Various methods [Saxe and Foulds (1996), Kjeldsen and Kender (1996)] use pre-

figured color distributions extricated from various large data sets that have been

analyzed statistically . For instance, in [Jones and Rehg (2002)], a statistical skin

colour model was gotten from the examination of several photographs from the inter-

net. Interestingly, techniques such as those portrayed in [Zhu et al. (2000)] construct

a model of skin colour in view of sampled data of skin when the framework is being

initialized.

The apparent shade of human skin has lots of variations over races and also among

people of a similar race. Extra fluctuation might be presented because of varying

light conditions as well as camera attributes. Accordingly, hue based ways to deal

with hand recognition need to utilize a few means for adjusting for this changeability.

In [Yang and Ahuja (1998), Sigal et al. (2004)], an invariant portrayal of the color

of the skin against changes in light is sought after, yet at the same time with no

definitive outcomes.

More elaborate systems depend on histograms coordinating, or utilize a basic look-

into table method [Kjeldsen and Kender (1996), Yang and Ahuja (1998)] in light of

the preparation information for the skin and conceivably its encompassing regions.

By and large, color extraction can be confounded by the objects in the background

with similar properties to the human skin with respect to colour. An approach to

adapt to this issue depends on removing the objects that are in the background.
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Nonetheless, removal of background objects is ordinarily in view of the suspicion

that the camera framework is fixed relative to the background objects. To take care

of this issue, some exploration [Utsumi and Ohya (1998), Blake et al. (1999)], has

investigated the dynamic redress of background models.

The color of the skin is just a single of many signals to be utilized for to hand

identification. For instance, in situations where the countenances likewise show up

in the camera field of view, further preparing is needed to recognize hands from the

human face. In this way, the color of the skin has been used in mix with different

signs to acquire better execution. In [Yuan et al. (1995)] skin location is consolidated

with non-inflexible movement identification and in [Derpanis et al. (2004)] the color

of the skin was utilized to limit the locale where movement components are to be

followed. An imperative research bearing is, subsequently, the mix different prompts.

2.2.2 Shape

The trademark outline of human hands has been used in its recognition in pictures in

different ways. Much data can be acquired by simply extracting the shapes of articles

in the picture. In the event that effectively distinguished, the contours speaks to the

state of the palm and is in this way not specifically reliant on perspective, the hue

of the skin and brightness.

In the general case, extracted shape that depends on the detection of edges brings

about a substantial number of edges that have a place with the hands additionally

to immaterial foundation objects. Thus, modern post-handling methodologies are

needed in building the unwavering quality of a method like this. In light of this ,

edges are regularly joined with (skin)color and the removal of backgrounds.

There are two types of gesture modeling. [Garg et al. (2009)] classifies gesture

modeling into ”spatial” and ”temporal modeling”. In spatial modeling the feature

of position or gesture shape in the scope of HCI applications are considered [Garg
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et al. (2009)], whereas temporal modeling relates the constantly changing features

of the hand gesture (in reference to the gestures motion) in the HCI environments

[Garg et al. (2009)]. Hand Modeling in spatial domain can be executed in either a

2D or 3D space [Pavlovic et al. (2000)].

In the works of [Krueger (1991), Krueger (1993), Utsumi and Ohya (1998)], the

2D/3D drawing systems of the users hands are extracted as a shape using the as-

sumption of background homogeneity and executing edge detection on the image.

Cases of the countours/shapes are utilized as elements can be seen in template and

also in vision based techniques.

Certain strategies concentrate on the particular morphology of hands and endeavor

to identify them in light of trademark hand shape elements, for example, the tips

of fingers. The methods [Argyros and Lourakis (2006)] implemented use contour to

signal fingertip position. A different procedure that was utilized in fingertip location

is ”template matching”. These templates or models could be pictures of the tips of

fingers or fingers [Rehg and Kanade (1995)]. Using extra image features like con-

tours,such approches that match patterns could improve. [Rehg and Kanade (1994)].

Aside the high cost of its computation, template unable to adapt to neither scaling

nor pivot of the objective of interest.That issue is tended to in [Crowley et al. (1995)]

by a continuous update of the template. To the discovery of fingertips, numerous

other aberrant methodologies to have been utilized, similar to image analysis utiliz-

ing special ”Gabor kernels” [Meyering and Ritter (1992)]. The primary hindrance

in the utilization of fingertips as components is the nuisance of they being blocked

by whatever is left of the hand. An answer for this impediment issue includes the

utilization of numerous cameras [Lee and Kunii (1995), Rehg and Kanade (1994)].
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2.2.3 Detectors that learn from pixel values

Critical work has been done on discovering hands in grey scale images in view of

their appearance and surface. In [Wu and Huang (2000)], the appropriateness of

various classification strategies with the end goal of view-autonomous hand posture

recognition was explored. Several methods [Triesch and Malsburg (1996), Triesch

and Von der Malsburg (1998)] endeavour to distinguish hands in light of hand ap-

pearances, via testing classifiers with set of image samples. The essential supposition

is that hand appearance contrasts more among hand motions than it varies among

various individuals playing out a similar motion. Still, programmed include deter-

mination constitutes a noteworthy trouble. Several publications consider the issue

of feature extraction and selection [Triesch and Malsburg (1996), Quek and Zhao

(1996), Nolker and Ritterpages (1998)], with quite a handfull of results with regards

to hand detection. All the more as of late, techniques in light of a machine learning

method know as boosting have shown exceptionally powerful outcomes in face and

hand location.

Boosting is a general strategy that can be utilized for enhancing the precision of a

given learning algorithm [Schapire (2002)]. It depends on the rule that an exceed-

ingly exact or classifier can be determined by the linear combination of numerous

moderately non-exact or ”weak” classifiers. By and large, a single weak classifier is

required to execute just somewhat superior to arbitrary.

The AdaBoost algorithm gives a learning strategy to getting reasonable collection

of weak classifiers. A collection of images is utilized for training by this technique

that comprises of positive and negative illustrations (hands and non-hands, for this

situation), which are related with its respective labels. Weak classifiers are included

successively into a selection of weak classifiers keeping in mind the end goal to di-

minish the upper bound of the training error.
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2.2.4 3D model-based detection

A classification of methodologies use 3D hand models for the identification of hands

in images. One of the upsides of these techniques is that they can accomplish view-

autonomous detection. The utilized 3D models ought to have enough degrees of

freedom.

Hand postures are then assessed given that the correspondences between the 3D

model and the observed image features are entrenched. Different 3D hand models

have been proposed in the writing. In [Rehg and Kanade (1994), Stenger et al.

(2002)], a full hand model is proposed which has 27 degrees of freedom (DOF) (6

DOFfor 3D location/orientation and 21 DOF for articulation). In [Goncalves et al.

(1995)], a 3D model of the arm with 7 parameters is used.[Gavrila and Davis (1996)]

proposes a 3D model with 22 degrees of freedom for the whole body with 4 degrees of

freedom for each arm. In [MacCormick and Isard (2000)], the user’s hand is modelled

much more simply, as an articulated rigid object with three joints comprised by the

first index finger and thumb.

2.2.5 Motion

The movement of the hand is a prompt used by a couple ways to deal with hand

discovery. The logic being that movement based hand recognition requests for an

exceptionally controlled setup, since it expect that the main movement in the picture

is because of hand development. In reality, early works (for example,Cui and Weng

(1996)]) accepted that the movement of the hand is the main movement happening

within the frame of the image. In later methodologies, movement data is joined with

extra visual signs. On account of fixed cameras, the issue of movement approximation

lessens to background upkeep and resulting segmentations. For instance in [Martin

et al. (1998)] that data was used in recognizing hands from other skin-hued protests
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and adapt to illumination conditions forced by shaded lights. The distinction in

”luminance” of pixels from two progressive pictures is near zero for background

pixels. By picking and keeping up a proper edge, moving articles are distinguished

inside a static frame.

2.3 Tracking

Tracking, or the frame-to-frame correspondence of the fragmented hand areas or

components, is the second step in the process towards understanding the observed

hand motion. The significance of robust tracking is twofold. To start with, it gives

the inter-frame connecting of hand/finger appearances, which allows the rise to tra-

jectories of features with time.

2.3.1 Template Based Tracking

This class of strategies shows incredible closeness to techniques for hand discovery.

Individuals from this class conjure the hand identifier at the spatial region that the

hand was distinguished in the past edge, to definitely limit the picture look space.

The understood supposition for this strategy to succeed is that pictures are gained

as often as sufficiently possible.

Correlation-based element following is straightforwardly gotten from the above ap-

proach. In [Crowley et al. (1995), OHagan and Zelinsky (1997)] connection based

format coordinating is used to track hand includes crosswise over edges. Once the

hand(s) have been distinguished in an edge, the picture districts in which they show

up is used as the model to recognize the turn in the following casing. The pre-

sumption is that hands will show up in the same spatial neighborhood. The work in

[Hager and Belhumeur (1996)] bargains likewise with variable light. An objective is

seen under different lighting conditions. At that point, an arrangement of premise

pictures that can be utilized to rough the presence of the question saw under different
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brightening conditions is built. Following at the same time tackles for the relative

movement of the question and the enlightenment.

Some methodologies distinguish hands as picture blobs in each casing and transiently

relate blobs that happen in proximate areas crosswise over edges. Approaches that

use this sort of blob following are for the most part the ones that recognize hands

in view of skin shading, the blob being the correspondingly sectioned picture locale

(e.g. [Birk et al. (1997), Argyros and Lourakis (2004b)]). Blob-based methodologies

can hold following of hands notwithstanding when there are extraordinary varieties

from casing to outline.

Augmenting the above approach, deformable shapes, or ”snakes” have been used

to track hand areas in progressive picture outlines [Cootes and Taylor (1992)]. Nor-

mally, the limit of this area is dictated by force or shading angle. All things con-

sidered, different sorts of picture components (e.g. surface) can be considered. The

procedure is introduced by putting a form close to the area of intrigue. Snakes take

into account ongoing following and can deal with numerous objectives as well as

mind boggling hand stances. They show better execution when there is adequate

difference between the foundation and the protest [Cootes et al. (1995)]. On the op-

posite, their execution is bargained in jumbled foundations. Following neighborhood

hand highlights on the hand has been utilized in particular settings, presumably in

light of the fact that following nearby components does not ensure the segmentation

of the hands from whatever remains of the picture. The techniques in [Martin et al.

(1998),Baumberg and Hogg (1994)], track turns in picture successions by consoli-

dating two movement estimation forms, both in view of picture differencing. The

principal procedure figures contrasts between progressive pictures. The second pro-

cesses contrasts from a foundation picture that was already obtained. The reason

for this blend is expanded invariability close to shadows.
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2.3.2 Optimal Estimation Techniques

The tracking of features have been widely researched in PC vision. In this unique

situation, the ideal estimation system gave by the Kalman filter [Kalman (1960)] has

been generally utilized in turning perceptions (feature dection) into estimations (re-

moved direction). The explanations behind its ubiquity are ongoing execution, treat-

ment of instability, and the prediction of expectations for the progressive frames.The

Kalman filter and hand blobs examination is utilized for hand tracking to get move-

ment descriptors and hand locale. It uses skin color for gesture tracking in hand and

is quite robust to background layers. In [Argyros and Lourakis (2004b)], the objective

is held against situations where hands impede each other, or show up as one blob in

the picture, in light of a theory definition and approval/dismissal scheme. The issue

of different blob tracking was examined in [Argyros and Lourakis (2004a)], where

blob tracking is performed in both pictures of a stereo match and blobs are related,

across both cameras and frames The orientation of the client’s hands is consistently

evaluated with the Kalman filter to limit the point in space that the client demon-

strates by expanding the arm and indicating with the forefinger in [Kohler (1997)]. In

[Utsumi and Ohya (1999)], hands are followed from various cameras, with a Kalman

filter in each picture, to evaluate the 3D hand gesture. Snakes incorporated with

the Kalman separating structure (see underneath) have been utilized for following

hands in images [Terzopoulos and Szeliski (1992)]. Treating the tracking of picture

elements inside a Bayesian system has been for quite some time known to give en-

hanced estimation results. In [Bregler (1997)], a strategy is proposed for following

human movement by gathering pixels into blobs in view of intelligent movement,

shading and fleeting bolster utilizing a desire boost (EM) calculation. Each blob

is in this way followed utilizing a Kalman channel. At long last, in [MacCormick

and Blake (199), MacCormick and Isard (2000)], the shapes of blobs are followed
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crosswise over casings by a blend of the Iterative Closed Point (ICP) calculation and

a factorization technique to decide worldwide hand posture. In [Utsumi and Ohya

(1999)], the 3D positions and stances of both hands are followed utilizing different

cameras. Each hand position is followed with a ”Kalman filter” and 3D hand stances

are evaluated utilizing picture highlights. This work manages the shared hand-to-

hand impediment inborn in following both hands, by choosing the perspectives in

which there are no such impediments.

2.4 Recognition

The general objective of hand gesture recognition is the understanding of the se-

mantics that the hand(s) area, stance, or motion passes on. Normally, the bigger

the vocabulary, the harder the gesture recognition undertaking gets to be. An early

framework that executed recognition was [Birk et al. (1997)]. It perceived 25 gestures

from the International Hand Alphabet. The recognition of gestures is of subject of

awesome enthusiasm all alone, as a result of gesture based correspondence. In ad-

dition, it additionally shapes the premise of various gesture recognition strategies

that regard gesture as a progression of hand stances. Other than the acknowledge-

ment of hand stances from pictures, gesture recognition incorporates an extra level of

multifaceted nature, including segmentation, of the ceaseless signal into constituent

components. In a various assortment of strategies, the transient cases at which hands

speed is limited are viewed as gestures, while video outlines that depict a hand move-

ment are some of the time ignored.

2.4.1 Template Matching

Template matching, central to pattern recognition methods, have been used with

regards to both gait and gesture recognition. With regards to pictures, Template

matching is achieved through the pixel-wise examination of a template and an image
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under processing. The similitude of the image of interest to the template is corre-

sponding to the aggregate score using a predetermined scale. For the recognition of

hand gestures, the picture of an identified hand shapes the hopeful picture which is

specifically contrasted against template images of hand gesture. The best template

that matches the image (assuming any) is considered as the matching gesture. Ob-

viously, in view of the pixel-by-pixel picture correlation, template matching is not

robust to changes in orientation and size of image. It’s one of the main techniques

utilized to identify hands in pictures. To adapt to the inconstancy because of changes

in orientation and size, a few creators have proposed startegies to normalize these

two factors[Birk et al. (1997)],others too prepare the arrangement of templates with

pictures from different perspectives.

2.4.2 Methods based on Principal Component Analysis

PCA strategies require an underlying preparing stage, in which an set of pictures

of comparable substance is handled. Regularly, the intensity estimations of each

picture are considered as estimations of a 1D vector, which has dimensions that are

equivalent to the pixels quantity in the picture; it is accepted, or upheld, that all

pictures equivalent in dimension.

For sets such as this, there were basis vectors developed to surmised any of the

(training) pictures in the set. The preceding procedure is executed for every stance

in the database of gestures, that the framework ought later have the capacity to

perceive. In PCA-based signal detection, the coordinating mix of central segments

shows the coordinating motion too.

This is on account of the coordinating blend is one of the agents of the set of motions

that were bunched together in preparing, as expressions of a similar signal.

PCA was initially connected to gesture identification in [Sirovich and Kirby (1987)]and

was stretched out in [Murase and Nayar (1995)]. A basic framework is displayed
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where the entire picture of a man signalling is analysed, expecting that the principle

part of movement is the gesture.

2.5 Complete Gesture Recognition Systems

As far as open motions, the communication via gestures for the hearing impeded has

gotten huge consideration [Starner and Pentland (1995), Cui et al. (1995), Waldron

(1995)].Other than giving a rather constrained and important dataset, it displays

critical potential effect in the public eye because it encourages the correspondence

of the hearing disabled with systems by a somewhat basic and natural mode for the

signer. In [Imagawa et al. (1998)], a bidirectional interpretation framework between

Japanese Sign Language and Japanese was actualized, so as to help the hearing

weakened speak with typical talking individuals through gesture based communica-

tion. Among the most early frameworks is the one in [Starner and Pentland (1995)]

which perceives around forty sign language from the american dictionary which was

subsequently stretched out to watch the signer’s gestures from a device fixed on a

top hat worn by the signer. Other than the recognition of individual hand acts,

the framework in [Martinez et al. (2002)] perceived movement primitives and full

sentences, representing the way that a similar sign may have distinctive implications

relying upon setting. The fundamental distinction of the framework in [Yang et al.

(2002)] is that it extricates movement directions from a picture sequence and utiliza-

tions these directions as elements in gesture recognition in mix with perceived hand

stances.
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Chapter 3

METHODOLOGY

3.1 Introduction

The recognition of gestures based on image based techniques is not new in the area

of image analysis. However this research seeks to analyse the detection of 6 finger

spelling gestures using image based techniques and subsequently compare the accu-

racy of two classifiers(the single space ”Euclidean” and ”Mahalanobis” classifiers) in

the detection of these 6 finger spelling gestures.

3.2 Segmentation

The first step of a hand gesture recognition process is hand detection from the back-

ground. The following steps of recognition process strongly rely on the influence of

segmentation, hand segmentation is the key important step in gesture recognition

process. Segmentation is the process of partitioning an image into multiple segments.

This is done to simplify the image for easier analysis. Suppose we want to extract

the important features within an image, the hand gesture in this case the image is

processed to isolate or segment the hand gesture from the background of the image.
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Edges are a usually a good signal for segmentation but color is used in this study for

better robustness even with noisy images

3.2.1 Skin Detection(Colour)

Colour is typically the principal characteristic looked for finding the hands of the

signer in a video frame since the skin is more distinct.

After finding skin pixel applicants, non-skin blobs can be removed by utilizing tex-

ture, shape or motion prompts.

Skin candidate pixels may then be utilized to perceive the hand with better qual-

ity while the background and other non-essential parts of the frame are removed.

Segmentation and detection of hand reduces computation time while the accuracy

of recognition of gestures in sign language and gesture recognition frameworks is

increased.

Colour being a low-level feature makes it computationally less expensive to pro-

cess. There exist some disadvantages nonetheless: the presence of color is delicate

to light changes (in its brightness and ”chromaticity”), camera alignment and shad-

ows. A very significant challenge encountered with vision based methodologies is the

segmentation of face and hand from non-uniform background with varying lighting

conditions

A color signal has two constituents; the luminance which carries light intensity data

or values and chrominance which is the color information data. It is frequently of

much advantage chrominance values independent of the luminance values in a 2D

space known as the ”chromaticity” space. The skin distribution in ”chromaticity”

space has demonstrated invariability to changing brightening situations.

The skin segmentation technique’s performance is greatly affected by the color space

that is used for the skin color segmentation.

A few skin pictures were taken under different lighting/luminance conditions to build
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up a skin locus. This is done to build up an offline skin model

Three color spaces are considered for skin color extraction in this study, specifically

standardized or normalized RGB, HSV and YCbCr.

3.2.2 RGB and Normalized RGB Color Space

The sensors in human visual framework are coarsely split into three essential bands,

”Red”, ”Green” and ”Blue”. So ”RGB” color framework has been produced utilizing

the three hues as the principal hues whiles alternate hues are depicted as the blend

of the major hues. In this manner, hues are viewed as mixes of the alleged primary

hues ”red(R)”, ”green(G)” and ”blue(B)”.

Electronic displays and a few cameras showcase pixels as a triple R,G,BP R3 of

intensity values in ”red”, ”green” and ”blue”, individually, in the ”RGB” color

space.

The ”RGB” channels are however exceptionally corresponded: they all incorporate

a property of brightness. The dependence of the luminance and ”chrominance” data

make the RGB color space somewhat less alluring. The conceivable number of hues

that can be characterized by utilizing ”RGB” shading space is

N “ p2p3qq8 “ 16, 777, 216 (3.2.1)

which is very adequate to show every single color that can be distinguished by human

eye. rR;G;Bs “ r0; 0; 0s conforms to black pixels and the rR;G;Bs “ r255; 255; 255s

is white. Between these two bounds lie all the other colours.

To get a linear independence between its ”chrominance” and luminance informa-

tion, the ”RGB” color space is normalized. To normalize the ”RGB” color space,
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Figure 3.1: The RGB color space-RGB Cube

preceding equations are used

r “
R

R `G`B
(3.2.2a)

g “
G

R `G`B
(3.2.2b)

b “
B

R `G`B
(3.2.2c)

Pure blue(b) is made redundant after the normalisation because r ` g ` b “ 1.

Figure 3.6 shows a histogram of the RGB color space showing the individual of the

Red, Green and Blue colors for an .

3.2.3 YCbCr Color Space

The color space where we have ”chrominance” and ”luminance” information indepen-

dence is the YCbCr color space. Y is the ”luminance” and Cb, Cr are the ”chromi-

nance” information. The RGB color space can be converted into the YCbCr color
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space by use of the following equations

Y “ pC1 ˚Rq ` pC2 ˚Gq ` pC3 ˚Bq (3.2.3a)

Cb “ pB ´ Y q “ p2´ 2 ˚ C3q (3.2.3b)

Cr “ pR ´ Y q “ p2´ 2 ˚ C1q (3.2.3c)

where C1 “ 0.2989, C2 “ 0.5866, C3 “ 0.1145 for standard images and C1 “ 0.2126,

C2 “ 0.7152, C3 “ 0.0722 for HD standard images.

Figure 3.2 shows the YCbCr color cube

Figure 3.2: The YCbCr color space-YCbCr Cube

3.2.4 HSV Color Space

Hue, Saturation and Value depend on the craftsman ideas of Tone, Shade, and Tint,

respectively.

The ”HSV” (Hue, Saturation, Value) demonstrate characterizes a color space as far

as three parts: Hue (H), the type of, (for example, blue, yellow). It has a range of 0

to 360 degrees, with 0 degree representing red, 120 degrees representing green, 240

degrees representing blue et cetera. Saturation (S) also has a range of 0% to 100%.
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It is sometimes called the purity of the color. A lower saturation will represent more

”greyness” an a higher, otherwise. Value (V), has a range of 0% to 100%. It also

represents the brightness. A ”hexcone” represents the HSV space where Hue is the

point around the vertical axis, Saturation is the separate from the focal axis and

Value is the separation along the vertical axis. Essential and secondary pure hues

are completely saturated (S = 1).. Figure 3.3 shows the HSV color cone which shows

the color distribution in the HSV color space. Figure 3.4 shows an image displayed

in both the RGB and HSV color spaces. A histogram plot of the HSV color space

is shown in figure 3.5

Figure 3.3: The HSV color space-HSV Cone

In this study the normalized RGB is used to extract the color. Chrominance-

Luminance Independence is reached by removing the blue component after the nor-

malization. This creates an r-b color space for skin color analysis. Colour distribu-

tion of human skin several nationalities have been explored in [Dour (2000)], being

an area in the ”r-g” colour space shaped like a shell (normalized RGB color space)

which is known as the skin locus. [Soriano et al. (2003)], the values for the colour
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Figure 3.4: An image in the RGB and HSV Color Space

Figure 3.5: Histogram Plot of the HSV Color Space
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Figure 3.6: Histogram Plot of the RGB Color Space

space are given by

r “
R

R `G`B
(3.2.4a)

g “
G

R `G`B
(3.2.4b)

A physical based skin model was proposed for the skin color that can be utilized to

identify the color of the skin, when the range of the source of light and the qualities

of the camera are known. Segments of skin were removed of recordings and pictures

under different lighting conditions and their standardized chromaticities were plotted

in the rg-space as delineated in the figure 3.7. The r-g plot is the plot of the

normalized red against the normalized green from the normalized RGB color space.

The lower and upper limits of the ”skin locus” are quadratics. The coefficients that

for the quadratics that characterize the membership function for the skin locus were

evaluated utilizing least-squares. These boundaries were derived by [Soriano et al.
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Figure 3.7: Skin Locus Proposed by [Soriano et al. (2003)]

(2003)] in her research towards the detection of skin pigments in sign language.

The upper bound is given by

g “ ´1.3767r2 ` 1.0743r ` 0.1452 (3.2.5)

and the lower bound defined by

g “ ´0.776r2 ` 0.5601r ` 0.1766 (3.2.6)

A more broad skin locus is created by using the ”r-g chromaticity” outline.

Figure 3.8 below delineates distribution of colour in the ”r-g chromaticity” chart,

where rosy hues, somewhat blue hues, and green-like hues are isolated. Notwith-

standing the ”line-p”, a ”line-n” is used here to remove skin colour by presenting the

”coarse skin” and ”fine skin” areas.

To begin with, the ”coarse skin” district is characterized utilizing boundaries that

are fixed, where skin and skin-like (hues close to the color of the skin) are separated.
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At that point, skin color is separated from skin-like colors using the ”fine skin” region

with varying boundaries.

Figure 3.8: Skin Color Distribution Proposed by [Soriano et al. (2003)]

Coarse Skin Region

At the point when pictures are captured under typical brightness conditions, the

”skin locus” involves a region close to the center of the ”r-g chromaticity” chart.

Limits of the ”coarse skin” locale are characterized as outlined in Figure 3.9, where

”line-G”, ”line-R”, ”line-B”, and ”line-up” are give by the following equations [Sori-

ano et al. (2003)]

line´G : g “ r (3.2.7)

line´R : g “ r ´ 0.4 (3.2.8)

line´B : g “ ´r ` 0.6 (3.2.9)

line´ up : g “ 0.4 (3.2.10)

The line-G(equation 3.2.7), line-R(equation 3.2.8), and line-B(equation 3.2.9) are

utilized to expel the greenish, ruddy, and pale blue pixels individually, while the

”line-up”(equation 3.2.10) is utilized to clear green-yellow pixels.

Fine Skin Region

When extraction is completed utilizing the ”coarse skin” region, we obtain a picture
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Figure 3.9: Coarse Skin Region Proposed by [Soriano et al. (2003)]

that includes both skin and non-skin pixels. To separate skin pixels from non-

skin pixels, a ”fine skin” area is created by moving the ”line-p” and the ”line-n”

in Figure 3.9 to the specific positions as per the created histograms as described

below. A sloping line with slope 1.0 called line-p could be utilized for isolating red

shading adequately, as in by using the line, in the accompanying shows unmistakable

peaks/dips for simple edge computation. A histogram describes the quantity of

pixels in a picture at its various intensities. This procedure is initialized with a

fine skin color segmentation which mimics the coarse skin segmentation process by

removing (g-r) and (g + r) histograms of skin candidate pixels. Since skin candidate

pixels have simply skin pixels and skin like pixels, front palms and back of hand(s)

would compare to first or second greatest neighbourhood crests in the histograms.

By considering those 4 neighbourhood crests , new limited skin color borders are

created. By cross coordinating of these 4 local peaks, 4 new narrowed skin loci is

separated and these loci are subjected to the skin candidate pixels and new images

are held by utilizing new loci. One of these loci would relate to genuine skin locus

for the present conditions. To choose the genuine skin locus, neighboring pixels of

each picture are assembled to locales.
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This can also be achieved with the constraint

Spixel “

#

1 if pg ă Q`q&pg ą Q´q&pW ą 0.004q

0 otherwise
(3.2.11)

where Q` is the upper bound quadratic function in the equation above and Q´

is the lower bound quadratic function given in equation 3.2.5 and equation 3.2.6

respectively. Where,

W “ pr ´ 0.33q2 ` pg ´ 0.33q2 (3.2.12)

3.2.5 Image Rotation

After segmentation of the skin region, the selected candidate skin pixel are rotated

onto their principal axis. Rotation is done for all image to standardize the analysis

process. This allows for the correct principal features to be selected for classification.

The hand is rotated to it’s principal axis. This is done by using the moments of the

image. The moment of an image is defined as

MKL “
ÿ

x

ÿ

y

xKyLIpx, yq (3.2.13)

Where Ipx, yq is the image intensity at point px, yq. The total energy of the image

is given by

M00 “
ÿ

x

ÿ

y

Ipx, yq (3.2.14)

A centroid(centre of mass) can be defined as well as the other moments of the image,

if the intensity is regarded at each point px, yq of the given image as the ’mass’ of

px, yq. In a two dimensional image the centroid is given by pM10,M01q

M10 “

ř

x

ř

y xIpx, yq

M00

(3.2.15)

M01 “

ř

x

ř

y yIpx, yq

M00

(3.2.16)
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The variance(σ2) is given by the second moment about the centroid(MC
KL)

σ2
x “MC

20 “M20 ´M
2
10 (3.2.17)

σ2
y “MC

02 “M02 ´M
2
01 (3.2.18)

σ2
x is the expansion or spread of the object in the x direction as σ2

y is the expansion

or spread of the object in the y direction.

Orientation is defined as the angle of axis of the least moment of inertia; the second

order moments are known as the moments of inertia. This determines how the object

lies in the field of view [Horn (1987)]. The orientation of an image is given by

tanp2θq “
2M11

M20 ´M02

(3.2.19)

unless M11 “ 0 and M20 “M02. Consequently

sinp2θq “
˘2M11

a

p2M11q
2 ` pM20 ´M02q

2
(3.2.20)

cosp2θq “
˘pM20 ´M02q

a

p2M11q
2 ` pM20 ´M02q

2
(3.2.21)

(3.2.22)

3.2.6 Principal Component Analysis(PCA)

Principal component analysis (PCA) is a standard apparatus in current data analysis.

It is a straightforward, non-parametric technique for separating pertinent data from

befuddling/complex data sets.

The dimensionality of the feature space is high,ordinarily, for instance, in image

processing, the dimensionality can be as high as 320*240, or much higher. In any

case, the groups inside the space will frequently lie on a low-dimensional subspace as

a result of connections between’s the features. A procedure is expected to discover

the dimensionality of the subspace.
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Lets take a set of training objects which are represented by their feature vectors,

xip1 ă i ă Mq, where M is given as the number of samples, the training can be

written in the format of X “ tx1, x2, ..., xMu whose mean vector is xm and covariance

matrix is Rx, defined by the following equations:

xm “
1

M

m
ÿ

i“1

xi (3.2.23)

Rx “
1

M

M
ÿ

i“1

pxi ´ xmqpxi ´ xmq
T (3.2.24)

The mean vector is a column vector and the covariance matrix is a real symmetric

square matrix of size N by N , where N is the length of the feature vector. T defines

the transpose of the matrix.

The training set X relates to a cluster of data points in a N dimensional feature

space. There exists repetition in the feature space since the features, ie. the feature

space dimensions, are not autonomous of each other. By PCA the repetition can be

removed by changing the first feature space into an associated PC space as far as

Principal Components. The change is in orthogonal, linear strategy, formalized in

the accompanying way:

y “ W Tx (3.2.25)

where y is the new feature vector in the PC space, and W is defined as follows:

W “ re1, e2, ..., eN s (3.2.26)

ei is the ith Principal Component(PC), or the orthonormal basis, of the feature

space. All PCs must be standardized, that is, eTl el “ I.

The dimensionality of the PC space is still N , the same as that of the first component

space. However, the connection between the features vanishes. Consequently by
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change a feature vector of the first feature space is mapped into the PC space as a

isolated point with basis without any dependence on each other

Figure 3.10: Feature space transformation.

No data is lost amid this change. The first component vector can be completely

recreated utilizing the transpose of the PCs

x1 “ Wy “ WW Tx (3.2.27)

where x1 is the reconstructed image. Since there is no loss of information, x1 “ x

The principal components now must be discovered . Different techniques have been

produced. For instance basic neural network designs have been recommended for

recursively assessing the subsets of the PCs, However, the most generally utilized

technique is to exploit the covariance network of the feature values of the training

set and tackle the eigen value decomposition problem.

Given the mean vector and the covariance matrix xm and Rx,respectively, of a train-

ing data set, the eigen value decomposition prob;em is to discover the answer for the

accompanying equation:

Rxei “ λiei (3.2.28)

where λi is the eigenvalue corresponds to the ith principal component. This solution

can be found by solving its characteristic equation.
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For an N by N covariance matrix, N eigen values and N essential segments exist. In

the PC space, the information lies on a low dimensional subspace on account of the

connection between the components, i.e. the changes in the data concentrates just on

a portion of the measurements while the variety along the rest of the measurements

is very nearly zero. Looking at the way that every eigen value speaks to the data

variation along its PC, those eigen values comparing to the small data changes are

near zero. See Figure 3.11

Figure 3.11: An example of a plot of eigenvalues, extracted from a data set of human
hand images.

Arranging the eigen values in order of decreasing magnitude allows y to be repre-

sented in a compact way by maintaining only the PCs corresponding to the first

few largest eigen values while ignoring the rest. That is, the component vector y is

processed in the accompanying decreased way:

y “ W T
c x “ re1, ..., eKs

Tx (3.2.29)

where Wc is the matrix that contains just the principal K PCs that are selected and

ei relates to the biggest eigenvalue, e2 the second biggest eigenvalue. This is done

sequentially till the kth eigen value.
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Normally K ăă N , and the dimensionality is reduced from N to K. The recreation

of the first component vector is given by:

x1 “ Wcy “ re1, ..., eksre1, ..., eks
Tx (3.2.30)

However, at this stage, the reconstructed vector is different from the original one:

x1 ‰ x. To measure the difference, the energy of the training set is defined in the

equation below

E “
N
ÿ

i“1

λi (3.2.31)

The error between the reconstructed vector x1 and the original feature vector x can be

measured using the criterion of percentage of total energy remaining. The percentage

of the remaining energy can be written as a function of the number of the retained

PCs:

EremainpKq “

řK
i“1

E
(3.2.32)

PCA minimizes the mean square reconstruction error of the training set:

ε “ min

«

M
ÿ

i“1

}xi ´ x
1
i}

ff

“

N
ÿ

i“K`1

λi (3.2.33)

“ E ´
K
ÿ

i“1

λi (3.2.34)

“ Ep1´ EremainpKqq (3.2.35)

The Equation above tells that the greater K, the smaller the reconstruction error,

and the more PCs retained the more energy remaining.

In essence, PCA assumes the projection of the training samples in the PC space is

bounded by a hyper ellipsoid. λi, is the variance of the data along the ith PC- more

than 98% of distribution of the data is covered in the range r´3
?
λi,´3

?
λis along

this PC.
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3.2.7 Construction of Image Vectors

An image made out of mˆn pixels, given m and n as the measurements of the image.

A vector is developed by doing a row by row concatenation of the image pixels

The picture vector can be composed as f “ ra11, ..., a1n, ..., am1, ...amns The number

of columns and rows are no longer critical here, the image vector is changed into

f “ ra1, ...aN s. For a 32 ˆ 32 picture matrix N “ mn “ 1024 . Every pixel in

the grayscale picture vector can be dealt with as a variable changing from 0 to

255. Subsequently the entire picture vector is an random vector which contains 1024

arbitrary variables for a 32ˆ 32 image matrix.

Each picture vector now relates as a solitary entity in an N dimensional component

space. The dimensions in the element space are not independent from each other

since connection exists between the pixels. Utilizing the system of PCA depicted

over, the component space is changed into another PC space whose dimensionality

is much lower than the first space.

Each PC in the PC space speaks to a method of changes of the hand structure.

The principal PC relates to the variation of a huge scale structure where the biggest

eigenvalue is its weight, the second PC compares to the variety of a less substantial

scale structure where the second biggest eigenvalue is its weight, etcetera. Figure

3.12 gives an illustration.

The PC space utilized was prepared by the training set containing 6 autonomous

gestures with more than 900 frames for every spelling gesture. The variations of the

initial three PCs are displayed. Some normal reproduction of images utilizing the

initial three PCs are given in 3.13, where the two static signals on the left side are the

first pictures of ”C” and ”Point” separately, while the two pictures on the privilege

are their reconstruction.

While applying PCA, one issue is to choose the dimensionality of the element space,
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Figure 3.12: The first three PCs. σi, is the standard deviation along the ith PC, and
σi “

?
λi.

i.e. what number of PCs to hold. As a rule the assignment of deciding what number of

PCs to hold involves speaking to however much data as could be expected. The more

PCs the more energy can be retained. In any case, holding more PCs additionally

implies more calculation and less dimensionality reduction, and some of the time

more PCs will acquire more clamour, for example, the variety of the light condition

or other white clamour. Subsequently, this is a trade-off between the loss of the

energy and the amount of calculation. The quantity of PCs to be held is chosen

utilizing a straightforward threshhold T . The model is formalized as

EremainpKq ą T 0 ă T ă 1 (3.2.36)

where EremainpKq is defined in equation( 3.2.32). From trials it is found that 0.95

would be a reasonable threshold for some applications.

3.2.8 Training Phase

The initial phase in the recognition stage is to build a picture database. The securing

of picture information is a key issue in the framework assessment, particularly for a
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Figure 3.13: Image reconstruction using PCA.

framework utilizing an appearance-based hand model. In the event that the greater

part of the pictures in the database focus on one or some particular view points, the

inevitable recognition rate would be very great. Be that as it may, the framework

would be touchy to the progressions of the hand configurations or positions. Thus

the recognition rate would not gauge the performance of the framework well. For a

fairly judged recognition, the accompanying techniques are utilized

1. A different database is developed for each of the finger-spelling gesture, with

every database containing 100 pictures. Diverse view angles are incorporated

into the database however much as could be expected.

2. A holdout technique is connected for choosing the training and test sets from

the databases. Initial images, say 70, are randomly selected from every database

for training, then another set of pictures, say another 70, are separated from

whatever is left of the pictures in every database. The technique guarantees

the independence amongst training and test tests.

3. The classifier is trained utilizing the training set and compute its precision
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utilizing the test set.

4. Steps 2 to 3 are rehashed for 10 times to work out the average accuracy

3.2.9 Classification

Two classifiers will be discussed, a single PC space is calculated which contains all 7

hand gestures.The average vector relating to the gesture classes in the PC space is

calculated.

1. Single-Space Euclidean Classifier

The least demanding strategy to manage a characterization issue is to dole

out the unknown object into the group with the least Euclidean separation

between the unknown element and the average of the group. Assume there is

an unknown element vector p “ rp1, p2, ..., pks and the ith class is characterized

by its mean vector wi “ rwi1, wi2, ..., wiKs, where K is the dimensionality of

the feature space. The Euclidean distance between them is defined as:

dEpp, wiq “ |p´ wi| “

«

K
ÿ

j“i

ppj ´ wijq
2

ff
1
2

(3.2.37)

The classification can then be formulated as:

wc “ minipdEpp, wiqq (3.2.38)

where wc is a whole number that represents to the picked class. This is a

basic standard with next to no calculation. The classifier that uses the above

grouping criterion is known as a single space Euclidean classifier since just a

single PC space is processed from the general training samples. This classifier

was used in our recognition.
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2. Single-space Mahalanobis Classifier The single-space Euclidean classifier treats

the distance along each measurement of the PC space in a similar way and does

not think about the diverse fluctuation along various bearings. To defeat this

issue , another classifier is executed: the single-space Mahalanobis classifier.

It too works in a single PC space, however utilizes the Mahalanobis distance,

characterized in equation( 3.2.39), instead of the Euclidean distance in the PC

space.

dMpp, wiq “ |p´ wi| “

«

K
ÿ

j“1

ˆ

pj ´ wij

σj

˙2
ff

1
2

(3.2.39)

where σj is the standard deviation along the jth PC. The single-space Maha-

lanobis classifier can be formalized by the following equation:

wc “ minipdMpp, wiqq (3.2.40)

3333333 Since in the feature space, the jth eigenvalue, λj, represents the data

variance along the jth PC, the above classification criterion can be rewritten

as:

wc “ mini

«

K
ÿ

j“1

ppj ´ wijq
2

λj

ff
1
2

(3.2.41)
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Chapter 4

Analysis and Recognition Results

The system was trained to recognize 6 independent handspelling gestures. With over

900 images per gesture.

Figure 4.1: The 6 hand spelling gestures that were trained and recognized
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4.1 Pre-processing(Skin Detection and Segmenta-

tion)

The system was trained to recognize the 6 gestures shown in Figure 4.1. Figures 4.2,

4.3, 4.4, 4.5, 4.6 and 4.7 show the skin segmentation process of a random selection of

the training data for each gesture. These images show the selection of skin-like pixel

by our system given different brightness and contrast settings and different threshold

values. Selection was of skin-like particles was either “over” or “under” exposed.

Figure 4.2: Hand region segmentation for gesture ”A”

After training the system a separate testing dataset is used to test the system. This

dataset has over a hundred images for each of the 6 handspelling gestures. The fig-

ures below show some of the output from the testing data.

The system achieved an overall 60% accuracy in it’s classification. Comparatively

the Mahalanobis Classifier performed 20% better at classifying the test gestures.

Figures 4.8, 4.9, 4.10, 4.11 and 4.12 show some randomly selected classification of

the system. It is worth noting once again that choosing different number of PCs can

44



Figure 4.3: Hand region segmentation for gesture ”B”

Figure 4.4: Hand region segmentation for gesture ”C”
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Figure 4.5: Hand region segmentation for gesture ”Five”

Figure 4.6: Hand region segmentation for gesture ”Point”
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Figure 4.7: Hand region segmentation for gesture ”V”

Figure 4.8: Testing Classification for gesture ”B”
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Figure 4.9: Testing Classification for gesture ”C”

Figure 4.10: Testing Classification for gesture ”Point”
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Figure 4.11: Testing Classification for gesture ”V”

Figure 4.12: Testing Classification for gesture ”V”
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affect the ultimate performance greatly. Increasing the number of PCs increases the

recognition rate. But too much increase in the number of PC leads to a drop in the

recognition rate because there is a trade-off between the recognition rate and the

computational speed. When too many PCs are included, noise will affect the final

result and thus cause a drop in recognition rate.

50



Chapter 5

CONCLUSION and
RECOMMENDATIONS

5.1 Summary of Results

With a little over 900 images tested, the system achieved an overall 60% total accu-

racy in it’s classification of the 6 finger spelling gestures.

The Mahalanobis classifier performed better; classifying correctly 50 more gestures

than the Euclidean classifier.

5.2 Conclusion

A functioning system that can recognize finger spelling gestures was successfully de-

veloped. In the performance analysis, the system does fairly at classifying the 6

hand spelling gestures. The number of PCs selected greatly affects the accuracy of

the classification. This comes with a trade-off between computational time and noise

though. The single space Euclidean Classifier was tested alongside the single space

Mahalanobis Classifier.

The single space Mahalanobis Classifier performed better than the single space Eu-
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clidean classifier especially as the number of PCs increased.

5.3 Recommendation for Further Studies

5.3.1 Recommendation

The importance of the skin segmentation process cannot be understated in this sys-

tem. Selecting of false skin pixels can greatly affect the accuracy of the classification.

The segmentation of skin pixels greatly affects the selection of PCs. Based on the

conclusion it is recommended that a more precise method of skin pixel segmentation

be employed. The number of PCs selected should be optimized based on the type of

classifier being employed to reduce the noise that affects the classification process.

5.3.2 Further Studies

1. A hierarchical decision tree combined with multi-scale theory to speed up the

recognition procedure.

2. The use of HMMs to recognize dynamic hand gestures(hand gestures in videos).

3. A multiple subspace classifier with a decision tree to help improve the classifi-

cation of the proposed gestures
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