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Abstract

The biharmonic problem is an example of a fourth order elliptic partial differential

equation (PDE). Fourth order elliptic PDEs are of interest in a wide range of appli-

cations including linear elasticity, fluid dynamics, biology, pattern formation, solid

mechanics and electromagnetics. Isogeometric Analysis (IgA), proposed in 2005 by

T. Hughes, J. Cottrell and Y. Bazilevs, is a numerical method that uses the same

class of basis functions for both representing the geometry of the computational do-

main and approximating the solution of problems governed by PDEs. Isogeometric

analysis is based on B-spline and Non-Uniform Rational B-Spline (NURBS), which

are the main tools used in most engineering design packages. The use of NURBS

makes it possible to construct basis functions with higher smoothness with relative

ease due to their special properties, thus making it a suitable choice for working with

higher order PDEs. Discontinuous Galerkin Isogeometric Analysis (dG-IgA) provides

a means for coupling multiple patches that occur in most practical applications. As

is usually the case, the computational domains in many engineering applications can-

not be represented by a single NURBS geometry mapping and are thus decomposed

into several sub-domains or patches. In this thesis, a dG-IgA scheme is proposed for

the biharmonic problem, and a-priori error estimates are obtained for geometrically

matching sub-domains with matching meshes. It is concluded that, dG-IgA is a fea-

sible option for solving higher order PDEs. From the theoretical results obtained,

the proposed dG-IgA scheme converges optimally in the dG-norm.
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Chapter 1
Introduction

1.1 Background

Prior to the advent of Isogeometric Analysis (IgA), it was necessary to convert data

between Computer Aided Design (CAD) and Finite Element Analysis (FEA) pack-

ages to analyze new designs during development. This process is a daunting and

time intensive task, since the computational geometric approach for each was differ-

ent, Hughes et al. (2005). According to some engineers, about 80% of the time used

for analysis is spent on the conversion and mesh generation. Isogeometric Analysis

however, is premised on the use of complex NURBS geometry (which is the basis

of most CAD packages) in the FEA application directly, thereby making it feasible

for models to be designed, tested and adjusted at once using a common data set,

Hughes et al. (2005), Cottrell et al. (2009).

According to Hughes et al. (2005), Cottrell et al. (2006), Bazilevs et al. (2006), the

primary objectives for IgA are the following.

1. To provide a more accurate representation of complex geometries and exact

representations of shapes like circles, spheres, ellipsoids etc. for analysis.
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2. To maintain geometric exactness at the coarsest level of discretization.

3. To eliminate the need to communicate with the CAD description of geometry

during mesh refinements.

4. To provide mesh refinement strategies that make the preceding objective pos-

sible and provide analogues of h-refinement and p-refinement.

These objectives have been achieved and the k-refinement strategy was also intro-

duced. The main ideas and procedures of IgA are presented in Hughes et al. (2005),

Cottrell et al. (2006), Cottrell et al. (2009). The authors also present compelling nu-

merical results. Bazilevs et al. (2006) focused more on the challenges in obtaining the

appropriate approximation estimates for an analysis framework based on NURBS.

In Hughes et al. (2005), the authors provide estimates of the FEA industry and

the CAD industry. They conclude that it is more industrially relevant to attack

the problem of the unification of CAD and FEA from a more CAD based direction.

NURBS, being the dominant tool in most CAD packages, was chosen as the basis for

analysis in IgA. NURBS have also been shown to have some properties that make

them suitable for analysis. Hughes et al. (2005) enumerates some of the items and

features of an analysis framework based on NURBS.

Some of the applications of IgA are listed in Nguyen et al. (2015), and includes

the analysis and discretization of contact problems. Where the use of conventional

geometry discretization, require very fine meshes in order to minimize jumps and

oscillations in traction responses when dealing with faceted surfaces. It has been

shown that this can be resolved by using NURBS, since smooth contact surfaces can

then be obtained, leading to more physically accurate contact stresses.
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It is observable from available literature that there has been a lot of work done on

building the framework for working with and analyzing second and first order PDEs.

Even restricted to just finite element schemes, the list is nigh in-exhaustive. Work

on higher order PDEs are relatively fewer, which in part is due to the nature and

complexity of the finite elements needed to work with them. The issue of high con-

tinuity approximation spaces however, could be solved with the introduction of IgA.

From available literature, the Isogeometric paradigm has been applied to almost all

benchmark second order partial differential equations and some higher order partial

differential equations using the standard Galerkin approach, see e.g. Auricchio et al.

(2007); Vuong et al. (2010); Tagliabue et al. (2014); Bartezzaghi et al. (2015).

Handling multiple patches is an important part of IgA, since the computational do-

mains in many engineering applications are represented by multiple NURBS patches.

In Cottrell et al. (2009), a method for gluing multiple patches by introducing a set of

constraint equations is described. There is on-going research into finding alternate

means of coupling patches in IgA.

1.2 Motivation

Progress in the numerical computing community is fuelled by the need and desire to

develop and implement faster, more efficient and mathematically sound algorithms

and procedures for solving pertinent problems.

Isogeometric Analysis has shown a number of advantages over classical FEA, see e.g.

Nguyen et al. (2015). As mentioned earlier, handling multiple patches is a critical

part of the development of IgA. With more options as to how to couple patches, it

would be possible to investigate and determine which approaches are convenient or
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better for various situations. This would allow for more flexibility and could increase

the scope of the industrial relevance and applications of IgA.

In Nguyen et al. (2014), a Nitsche method is proposed as an alternative for coupling

NURBS patches in IgA. Discontinuous Galerkin Isogeometric Analysis (dG-IgA) has

also been introduced and shown to provide a means for coupling multiple patches.

There have been investigations into using dG-IgA and this has been done for most

second order PDEs, see e.g. Brunero (2012); Langer and Toulopoulos (2014); Langer

et al. (2014); Zhang et al. (2015); Langer and Moore (2016). It has been observed that

the discontinuous Galerkin approach combines well with multi-patch and complex

geometries. However, from the literature observed, dG-IgA has yet to be studied in

the context of high order PDEs.

1.3 Problem Statement

There are a number of industrially relevant high order PDEs. Fourth order elliptic

problems for instance, come up in linear elasticity, fluid dynamics, and solid me-

chanics among others. High order PDEs have been studied in the context of IgA

using the standard Galerkin approach, see e.g. Gomez et al. (2009), Tagliabue et al.

(2014), and Bartezzaghi et al. (2015).

Discontinuous Galerkin Isogeometric Analysis, among other things, offers a means

of coupling multiple patches. This has been analyzed and tested for several second

order PDEs with compelling results as to the feasibility of the approach. To extend

the applicable scope of the method, there is a need to analyze the method in the

context of higher order PDEs.
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This thesis aims to apply dG-IgA to the biharmonic problem. Using techniques from

Engel et al. (2002), Mozolevski and Süli (2003), Pietro and Ern (2012), Hughes et al.

(2005) and Bazilevs et al. (2006), a-priori error estimates are presented.

1.4 Objective

The objectives of this thesis are:

1. To derive the standard Galerkin IgA approximation for the general biharmonic

problem and the corresponding a-priori error estimates;

2. To derive an interior penalty variational formulation for the Dirichlet version

of the biharmonic problem, and obtain a discontinuous Galerkin Isogeometric

Analysis (dG-IgA) approximation;

3. To show the existence, uniqueness and stability of the solution to the model

problem;

4. To obtain a-priori error estimates for the proposed formulation.

1.5 Outline of the Methodology

First, the standard Galerkin IgA formulation for the general biharmonic problem is

derived. Existence and uniqueness are shown by invoking the Lax-Milgram Lemma,

and showing that the necessary prerequisites are satisfied. From the results pre-

sented in Bazilevs et al. (2006), Tagliabue et al. (2014), a-priori error estimates are

presented for the single patch problem with h-refined meshes.

Next, following the approach in Brunero (2012), Langer and Toulopoulos (2014),

Langer et al. (2014), an interior penalty variational formulation for the Dirichlet

version of the biharmonic problem is derived. A dG-IgA scheme is obtained from
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this variational formulation. Consistency is shown using standard arguments for

discontinuous Galerkin methods, see Riviére (2008), Pietro and Ern (2012). Using

arguments similar to those used in Brunero (2012), Mozolevski and Süli (2003), dis-

crete coercivity and boundedness of the bilinear form are shown.

Some pertinent auxiliary results from Bazilevs et al. (2006), Tagliabue et al. (2014)

and Moore (2017) are presented, and estimates for the interface integrals are derived.

Subsequently, a-priori error estimates for multiple geometrically matching patches

with matching meshes are presented.

1.6 Justification of the Study

The work presented in this thesis provides a starting point for using dG-IgA for

high-order PDEs like the Cahn-Hilliard equation, the Euler-Bernoulli beam equation

etc. which are industrially relevant.

The combination of the high continuity offered by IgA and the flexibility offered

by the discontinuous Galerkin approach is worth investigating. In Auricchio et al.

(2007), the authors recommended the discontinuous Galerkin Isogeometric analysis

formulation as a viable extension to their work.

Due to the tensor product nature of NURBS basis functions, refinements tend to be

global. This has been noted as one of the shortcomings of NURBS-based IgA (Nguyen

et al., 2015). Aside from providing a means for coupling NURBS patches, using the

discontinuous Galerkin approach makes it possible to carry out local refinements.
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1.7 Organization of Chapters

In chapter 1, IgA is briefly presented and its primary objectives are recalled. Some

of the advantages of IgA are mentioned as well as some of the challenges encountered

in its development. The works that motivated this thesis and reasons why dG-IgA

is worth investigating for higher order PDEs are also discussed.

In chapter 2, a review of available literature on IgA is presented. Though some

non-Galerkin-based Isogeometric methods have been proposed recently, this review

is restricted to Galerkin based IgA methods.

In chapter 3, function spaces and some operations pertinent to the analysis of PDEs

are recalled. The basic features of Isogeometric Analysis are also recalled in more

detail; specifically the basis used (B-spline and NURBS) and the tools necessary

for their development, some of their properties, as well as the available refinement

strategies. Subsequently, a discussion on the viability of NURBS as a basis for anal-

ysis is presented. Next, the biharmonic problem is introduced and the variational

formulation for the problem is derived. The existence, uniqueness and stability of the

solution to the model problem is shown. The Galerkin equations for the biharmonic

problem, on finite dimensional NURBS spaces (single patch) are obtained. A-priori

error estimates are presented for the derived scheme for h-refined meshes.

In chapter 4, an interior penalty Galerkin scheme for the biharmonic problem is de-

rived and consistency is shown. The existence and uniqueness of the solution to the

model problem is shown. Next, approximation estimates for NURBS are presented,

and a-priori error estimates are obtained for the dG-IgA scheme derived for the bi-

harmonic problem on h-refined meshes.
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Finally, conclusions and recommendations for further research are presented in chap-

ter 5.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, a brief review of literature on IgA is presented. Most methods and

procedures in IgA are similar to those used in classical FEA, as the methods have

just been adapted to use a different class of basis. Literature on IgA thus mostly

involves the adaptation of the various methods in classical FEA, to varying problems

using the Isogeometric paradigm. To be consistent with the rest of the work in this

thesis, this review is restricted to work on NURBS-based IgA using the Galerkin

approach.

2.2 Literature Review

Finite element methods were introduced in the 1950s as a means to obtain approx-

imate solutions to PDEs. Finite element methods are employed in FEA packages,

and have become a major part of engineering analysis. Solution of PDEs by the

finite element method roughly consists of a variational formulation of the problem,

and trial and test function spaces defined by their respective basis functions. These
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basis functions are defined by a non-overlapping decomposition of the problem do-

main into simple shapes, dubbed ”finite elements“, and are usually represented by

piece-wise polynomial functions. Over the years, finite element methods have been

extensively studied and applied to a wide range of problems, with numerous books

and articles to that effect, see e.g. Hughes (2000); Ciarlet (2002); Brenner and Scott

(2008); Nečas (2012).

Discontinuous Galerkin methods are finite element methods which were first intro-

duced for hyperbolic problems, and have also been applied to elliptic and parabolic

problems, see Riviére (2008) and Pietro and Ern (2012). Discontinuous Galerkin

methods allow for discontinuities in the trial and test spaces, making it possible to

localize test functions to single mesh elements and introducing numerical fluxes at

interfaces. Interest in discontinuous Galerkin methods has increased over the years,

and they have seen more mathematically rigorous development. In Arnold et al.

(2002), a unified discontinuous Galerkin framework was presented for second order

elliptic problems. Discontinuous Galerkin methods have also been considered for

higher order problems, see e.g. Engel et al. (2002) and Süli and Mozolevski (2007).

Computer Aided Design packages are typically used by engineers for designing. This

ranges from designing new types of aircraft or underground works to simply creating

digital representations of geometry (Beer, 2015). Over the years, the CAD industry

has seen a lot of innovation, with the introduction of various CAD representations.

Hughes et al. (2005) gives an outline of the evolution of CAD representations and

FEA basis function over the years.

Isogeometric Analysis presents an alternative to classical FEA, and was necessitated

by the bottleneck in computational speed in engineering analysis due to the lack of a

direct link between CAD and FEA. In Hughes et al. (2005), the authors showed that
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NURBS basis could be used for both geometric representation and analysis, thereby

reducing the time spent in the mesh generation phase for analysis of design models

created using CAD. Analogues of the refinement strategies in FEA (h-refinement and

p-refinement) were also presented together with a higher level refinement strategy

(k-refinement). The procedures for refinement were designed such that the geometry

or its parametrization remained unchanged, eliminating the need to communicate

with the CAD description of geometry during mesh refinements.

In Table 2.1 the differences between IgA and classical FEA have been summarized,

see Hughes et al. (2005).

Table 2.1: Comparison of Finite Element Analysis and NURBS-based Isogeometric
Analysis
Finite Element Analysis Isogeometric Analysis
Nodal points Control points
Nodal variables Control variables
Mesh Knots
Basis interpolates- Basis does not interpolate-
-nodal points and variables -control points and variables
Approximate geometry Exact geometry
Polynomial basis NURBS basis
Gibbs phenomena Variation diminishing
Sub-domains Patches

Compact support
Partition on unity

Isoparametric concept
Affine covariance

Patch tests satisfied

Isogeometric Analysis was used to solve a number of sample problems from linear

solid and structural mechanics and fluid mechanics. For the infinite plate modeled by

a quarter plate with a circular hole, the authors obtained optimal convergence rates

in the L2 norm. Optimal convergence rates were obtained in the energy norm for a

solid circular cylinder subjected to internal pressure loading. Other sample problems
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considered included the Scordelis-Lo roof, pinched hemisphere, pinched cylinder and

advection-diffusion problems in fluid dynamics.

The authors identified several areas of IgA that required more research. These in-

cluded finding a robust strategy for numerical quadrature under various conditions

for NURBS, developing a mathematical theory of convergence and error analysis,

applying IgA to contact problems and other problems of engineering interest. This

list is by no means exhaustive, and these areas are still being investigated.

In the monograph Cottrell et al. (2009), it was noted that, in order to obtain a-priori

error estimates for NURBS-based IgA analogous to those available for classical finite

element methods, there were several challenges. The first being that the approxi-

mation properties of the rational basis were more difficult to determine than those

of a standard polynomial basis. In particular, the weights associated with NURBS

were determined by the geometry and could not be adjusted to improve results when

attempting to approximate a field over that geometry.

The second difficulty was attributed to the relatively large support of the spline

functions (that is, p`1 “elements”, p being the polynomial degree of the spline func-

tions). Standard interpolation estimates are usually obtained by finding best fits

within each element and then summing these results over all elements in the mesh

to obtain a global approximation estimate. The larger supports of the spline func-

tions make obtaining approximation estimates a non-trivial task, since it is virtually

impossible to determine optimal values for the control variables by considering each

element individually. The issue was noted to be further complicated by the possible

occurrence of differing levels of continuity. This meant that there was the possibility

of having differing sizes of supports of functions throughout the domain.
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In IgA, the geometry of the mapping between a d-cube in the parametric space

(d “ 1, 2, 3) and its image in the physical space requires the introduction of concepts

and spaces not utilized in standard FEA. In Bazilevs et al. (2006), it was noted that,

for interpolants of sufficiently high continuity, it was not feasible to stay in a single

element and invoke a standard Bramble-Hilbert estimate. To handle the problem of

the large support of the NURBS basis, and to develop the framework for the approx-

imation properties for NURBS, the authors introduced a non-standard Hilbert space

which they called “bent” Sobolev spaces. These spaces incorporated the notion of

“support extensions”. The authors went ahead to present inequalities and estimates

necessary to obtain error estimates for h-refined meshes. The sample problems con-

sidered include the classical linear elasticity problem, the advection diffusion problem

and the driven cavity problem.

According to Auricchio et al. (2010), the use of high-degree basis functions, as in

k-refinement, raises the issue of efficient implementation, with respect to the numer-

ical quadrature rules adopted when assembling the system of equations. Specifically,

while element-wise Gauss quadrature is known to be optimal in the finite element

context, it has been observed to be sub-optimal when k-refined Isogeometric dis-

cretization of Galerkin type are considered. In response, in Hughes et al. (2010), the

authors derive and present a number of more efficient specialized rules for IgA.

In Nguyen et al. (2015), the authors present an overview of IgA, providing some

applications of IgA and also give quite an extensive list of the research that has

been carried out under the IgA paradigm. They point out areas in which IgA has

exhibited advantages over the classical finite element methods. These areas include

contact problems, optimization problems and shell and plate problems. They also
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note that, the smoothness of NURBS basis functions makes them attractive for anal-

ysis of fluids and for fluid-structure interaction problems. Due to the relative ease

with which high order continuous basis functions can be constructed in IgA, it has

subsequently been used with a substantial amount of success in solving PDEs that

involve fourth order (or higher) derivatives of the field variable such as the Cahn-

Hilliard equation. The authors also make mention of some of the shortcomings of

using NURBS. These include the inability of NURBS to produce watertight geome-

tries, which can lead to complications in mesh generation. Also, due to the tensor

product nature of NURBS, refinement operations tend to be global, leading to in-

efficient error estimation and trouble with adaptivity algorithms. The authors also

discuss some aspects of computer implementations for IgA.

Multiple patch NURBS are used to represent objects with complex geometries. In

Cottrell et al. (2009), multiple patches were glued together using exact constraint

equations, under the restriction that the coarsest meshes had the same parametriza-

tion. A Nitsche method for coupling two and three dimensional NURBS patches was

presented in Nguyen et al. (2014), and provides an alternative means of coupling

patches. Nitsche’s method was originally proposed and is usually used to weakly

enforce Dirichlet boundary conditions. The authors proposed a method that used

Nitsche’s approach to couple patches, under the assumption that, some other method

is used to enforce the essential boundary conditions other than the Nitsche method.

The method was applied to the Timoshenko beam problem and the Cantilever beam

problem among others, and convergence analysis were presented for the Timoshenko

beam problem.

In Brunero (2012), a dG-IgA scheme was proposed for the scalar diffusion prob-

lem. This is arguable the first time IgA was rigorously combined with discontinuous
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Galerkin methods, though the idea had been recommended in Auricchio et al. (2007).

A number of useful inequalities for dG-IgA were presented. An interior penalty vari-

ational formulation was obtained for the diffusion problem and existence and unique-

ness of the solution to the model problem were shown via the Lax-Milgram lemma by

showing coercivity and boundedness of the bilinear form. Numerical analysis were

performed on the dG-IgA scheme for matching meshes. No numerical results were

presented for the proposed scheme, however, the author outlines some steps for the

implementation of the scheme.

In Langer and Toulopoulos (2014), the approximation properties of dG-IgA meth-

ods were studied in the context of second order elliptic problems with discontinuous

coefficients. A-priori error estimates are presented for usual regularity and low reg-

ularity assumptions on the exact solution. Numerical results were presented that

showed optimal convergence rates in the dG-norm.

Discontinuous Galerkin Isogeometric Analysis schemes are further studied in Langer

et al. (2014) and Langer and Moore (2016) for second order heterogeneous elliptic

problems in 2 and 3 dimensions and open and closed surfaces. Theoretical and nu-

merical results are presented for patches with matching and non-matching meshes.

The authors also introduced graded mesh techniques in dG-IgA for problems with

singularities.

On software implementation, it is noteworthy that a number of softwares have been

developed that implement the IgA concept, mostly as extensions in existing FEA

programs. According to Vázquez (2016), in the last few years, a number of new IgA

softwares have been released:
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1. GeoPDEs, and at least one more package written in MATLAB, focused on

computational solid mechanics.

2. Igatools, which is a C++ library providing dimension independent implemen-

tation of IgA.

3. G+Smo, another C++ library for IgA which also includes implementations for

hierarchical splines, Jüttler et al. (2014).

4. PetIGA, a C implementation of Isogeometric methods based on PETSc, and

according to Vázquez (2016), has been recently extended to include the curl-

and div-conforming spline discretization.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, function spaces and some operations relevant to the analysis of PDEs

are recalled. Next, B-splines and NURBS and their use in IgA is presented. Finally,

the biharmonic problem is presented and the variational formulation of the problem

is derived. Uniqueness and existence of the solution to the model problem are shown

and a-priori error estimates are presented for the single patch case.

3.2 Preliminaries

In this section, some pertinent function spaces are introduced. The definitions in

this section are mostly taken from Riviére (2008), Adams and Fournier (2003) and

Lions and Magenes (1972).

Let Ω be an open bounded Lipschitz domain in Rd, d “ 1, 2, 3, with Lipschitz contin-

uous boundary Γ “ BΩ. The symbol, ∇, denotes the gradient of a smooth function

u : Rd Ñ R, i.e., ∇u “
´

Bu
Bx1
, ¨ ¨ ¨ , Bu

Bxd

¯

. Let C1
0pΩ;Rdq denote the space of vector-
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valued functions ϕ “ pϕ1, . . . , ϕdq whose component functions ϕi; i “ 1, . . . , d, are

continuously differentiable and compactly supported on Ω. The divergence of ϕ is

given by

divϕ “ ∇ ¨ϕ “
d
ÿ

i“1

Bϕi
Bxi

.

Definition 3.2.1. The support of a continuous function u defined on Rd is the clo-

sure of the set of points at which the function is not equal to zero. If it is bounded and

included in the interior of the domain Ω, then u is said to have compact support in Ω.

Given a multi-index α “ pα1, α2, . . . , αdq P Nd, a locally integrable function w is said

to be the αth weak partial derivative of a locally integrable function u if

ż

Ω

upxqDαvpxqdΩ “ p´1q|α|
ż

Ω

wpxqvpxqdΩ @v P C80 pΩq, (3.1)

where C80 pΩq is the space of all infinitely differentiable functions with compact sup-

port, and the partial derivative with respect to α is given by

Dαv “
B|α|v

Bxα1
1 ¨ ¨ ¨ Bxαdd

,

with |α| “
řd
i“1 αi. Then, w can be denoted by w “ Dαu.

Definition 3.2.2 (Lp Spaces). Let Ω be a domain in Rn and let p be a positive real

number. Denote by LppΩq the class of all measurable functions u defined on Ω for

which
ż

Ω

|upxq|pdΩ ă 8 .
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The norm on LppΩq is given by

}u}LppΩq “

$

&

%

`ş

Ω
|upxq|pdΩ

˘
1
p , p P r1,8q,

ess supt|upxq| : x P Ωu, p “ 8 .

As an example, for p “ 2, there is L2pΩq, the space of Lebesgue measurable, square-

integrable functions over Ω

L2
pΩq :“ tu measurable :

ż

Ω

|upxq|2dΩ ă 8u .

Remark 3.2.1. Sobolev spaces, generally, are Banach spaces of Lebesgue measurable

functions with varying orders of weak derivatives, and are quite essential to the

study of the theory of partial differential equations and related areas of mathematical

analysis, see Adams and Fournier (2003) for more detail.

Definition 3.2.3 (Sobolev Spaces). For any positive integer m and 1 ď p ď 8, the

Sobolev space Wm,ppΩq is defined as

Wm,p
pΩq :“ tu P LppΩq : @0 ď |α| ď m, Dαu P LppΩqu.

Definition 3.2.4 (The Sobolev Norms). Define a functional } ¨ }Wm,p , where m is a

positive integer and 1 ď p ď 8, as follows:

}u}Wm,p “

¨

˝

ÿ

0ď|α|ďm
}Dαu}pLppΩq

˛

‚

1
p

, p P r1,8q,

}u}Wm,8 “ max
0ď|α|ďm

}Dαu}L8pΩq.

Remark 3.2.2. Sobolev spaces of particular interest are those formed from L2 spaces.

With appropriate norms and inner products defined, these form Hilbert spaces, that

is, complete inner product spaces.
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Definition 3.2.5. Let s be an integer, then the Hilbert space HspΩq is given by

Hs
pΩq :“ tu P L2

pΩq : @0 ď |α| ď s, Dαu P L2
pΩqu,

with the norm

}u}HspΩq “

¨

˝

ÿ

0ď|α|ďs
}Dαu}2L2pΩq

˛

‚

1
2

,

the seminorm

|u|HspΩq “ }∇su}L2pΩq “

¨

˝

ÿ

|α|“s
}Dαu}2L2pΩq

˛

‚

1
2

.

and the inner product

pu, vqHspΩq “
ÿ

0ď|α|ďs
pDαu,DαvqL2pΩq.

The L2pΩq space equipped with the norm

}u}L2pΩq “

ˆ
ż

Ω

|upxq|2dΩ

˙
1
2

,

and the inner product

pu, vqL2pΩq “

ż

Ω

upxqvpxqdΩ,

is a Hilbert space, and can be denoted by H0pΩq.

Next, the relation between the Sobolev spaces and the r-times continuously differ-

entiable functions is presented.

Theorem 3.2.1 (Sobolev’s Embedding Theorem). For Ω Ă Rd, we have

Hs
pΩq Ă Cr

pΩq if
s´ r

d
ą

1

2
. (3.2)

20



Proof. See Riviére (2008); Adams and Fournier (2003).

As an example for r “ 0, we have the following conditions:

Hs
pΩq Ă C0

pΩq if

$

&

%

s ą 1
2

for d “ 1,
s ą 1 for d “ 2,
s ą 3

2
for d “ 3.

Next, the trace theorem is recalled. This is the restriction of Sobolev spaces along

the boundary.

Theorem 3.2.2 (Trace Theorem). Let Ω be a bounded domain with Lipschitz bound-

ary Γ and outward normal vector n. There exist trace operators

γ0 : HspΩq Ñ Hs´1{2pΓq for s ą 1
2

and γ1 : HspΩq Ñ Hs´3{2pΓq for s ą 3
2

that

are extensions of the boundary values and boundary normal derivatives, respectively.

The operators γ0, γ1 are surjective. Furthermore, if v P C1pΩq, then

γ0v “ v|Γ, γ1v “ n ¨∇v|Γ. (3.3)

Proof. See [Riviére (2008); Lions and Magenes (1972)].

For convenience, when dealing with function values and normal derivatives on bound-

aries, v and n ¨∇v are written instead of the trace γ0v and γ1v, respectively.

Let Th :“ tΩiu
N
i“1, be a collection of sub-domains of a domain, Ω, such that

Ω “
N
ď

i“1

Ωi , with Ωi

č

Ωj “ H, if i ‰ j .

Then a broken Sobolev space, HspΩ, Thq, is defined as

Hs
pΩ, Thq :“ tu P L2

pΩq : u|Ωi P H
s
pΩiq, @i “ 1, . . . , Nu,

equipped with the norm

}u}HspΩ,Thq “

˜

N
ÿ

i“1

}u}2HspΩiq

¸
1
2

,
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and the seminorm

|u|HspΩ,Thq “

˜

N
ÿ

i“1

|u|2HspΩiq

¸
1
2

.

Broken Sobolev spaces are natural spaces for working with discontinuous Galerkin

methods.

Next, the Young and Cauchy-Schwarz inequalities that will be used in several places

are recalled.

Young’s inequality is stated as follows

@ε ą 0, @a, b P R, ab ď
ε

2
a2
`

1

2ε
b2. (3.4)

The Cauchy-Schwarz inequality is given by

ˇ

ˇ

ˇ

ˇ

ż

Ω

fgdΩ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

Ω

|f |2dΩ

˙
1
2
ˆ
ż

Ω

|g|2dΩ

˙
1
2

, @f, g P L2
pΩq. (3.5)

Lemma 3.2.3 (The Poincaré-Friedrichs’ inequality). There exists a constant C1,

depending only on the domain Ω, such that

}v}L2pΩq ` }∇v}L2pΩq ď C1}∆v}L2pΩq, @v P H2
0 pΩq, (3.6)

where H2
0 pΩq :“ tv P H2pΩq : v|BΩ “ n ¨∇v|BΩ “ 0u, n is the unit normal vector to

BΩ.

Proof. See Ciarlet (2002); Nečas (2012)

Theorem 3.2.4 (Divergence Theorem). If Ω is a domain in R2 with smooth or

piecewise smooth boundary and F is a vector field defined on Ω, then the divergence

theorem states that

ż

Ω

∇ ¨ F dΩ “

ż

Γ

pn ¨ F q dΓ (3.7)

where n is the outward pointing unit normal vector to Γ.
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Green’s first identity is given by

´

ż

Ω

ϕ∆ω dΩ “

ż

Ω

∇ϕ ¨∇ω dΩ´

ż

Γ

ϕpn ¨∇ωq dΓ, (3.8)

and follows from the following product rule in multiple dimensions, given by

∇ ¨ pϕ∇ωq “ ∇ϕ ¨∇ω ` ϕ∆ω , (3.9)

and the divergence theorem.

3.3 B-splines and NURBS

In this section, the construction of B-splines and NURBS is recalled. Most of the

definitions presented and the concepts illustrated are taken from the monograph,

Cottrell et al. (2009), and the article, Hughes et al. (2005).

Definition 3.3.1 (Knot Vectors). A knot vector in one dimension is a non-decreasing

set of coordinates in the parameter space, written Ξ “ tξ1, ξ2, . . . , ξn`p`1u, where

ξi P R is the ith knot, i is the knot index, i “ 1, 2, . . . , n` p` 1. p is the polynomial

order, and n is the number of basis functions used to construct the B-spline curve.

The knots partition the parameter space into elements.

Knot values may be repeated (referred to as multiplicities), and these multiplicities

have important implications for the properties of the basis. If the knots are equally

spaced, then the knot vector is said to be uniform, and non-uniform otherwise. And

a knot vector is referred to as open, if the first and last knots have a multiplicity of

p` 1.

Definition 3.3.2 (Univariate B-Spline Basis Functions). With a knot vector in hand,

the B-spline basis functions are defined recursively starting with piecewise constants
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(p “ 0):

Ni,0pξq “

"

1 if ξi ď ξ ă ξi`1,
0 otherwise.

(3.10)

For p “ 1, 2, 3, . . . , they are defined by

Ni,ppξq “
ξ ´ ξi
ξi`p ´ ξi

Ni,p´1pξq `
ξi`p`1 ´ ξ

ξi`p`1 ´ ξi`1

Ni`1,p´1pξq . (3.11)

This is referred to as the Cox-de Boor recursion formula.

The results of applying (3.10) and (3.11) to a uniform knot vector are presented in

Figure 3.1. Using non-uniform knot vectors makes it possible to obtain much richer

behaviour than is possible with simple uniform knot vectors. Figure 3.2, is generated

from the quadratic non-uniform knot vector given by Ξ “ t0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5u.

In Figure 3.2, the basis functions are interpolatory at the ends of the interval and at

the repeated knot ξ “ 4, where the functions are C0-continuous. Everywhere else,

the functions are C1-continuous.

In general, basis functions with order p are Cp´mi-continuous at knots with mul-

tiplicity mi. If mi happens to be equal to p at say, ξi, then the basis function is

interpolatory at ξi. With a multiplicity of p ` 1, the basis becomes discontinuous

and a patch boundary is formed at that knot.

Definition 3.3.3 (B-spline Curve). Given n basis functions, Ni,p, i “ 1, 2, . . . , n,

and corresponding control points Bi P Rd, i “ 1, 2, . . . , n, a piecewise polynomial

B-spline curve is given by

Cpξq “
n
ÿ

i“1

Ni,ppξqBi . (3.12)

Piecewise linear interpolation of the control points gives the control polygon, see

Figure 3.3(a). The control points are basically vector valued coefficients of the basis
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Figure 3.1: Basis functions of order 0, 1, and 2 for uniform knot vector Ξ “

t0, 1, 2, 3, 4, . . .u (Cottrell et al. (2009)).

Figure 3.2: Quadratic basis functions for open, non-uniform knot vector Ξ “

t0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5u (Cottrell et al. (2009)).

functions and in this sense, they are similar to nodal coordinates in finite element

analysis.

The properties of B-spline curves mainly follow from the properties of their basis

functions. Piegl and Tiller (1997), discusses many such properties in detail.

Definition 3.3.4 (B-spline Surface). Given a control net tBi,ju, i “ 1, 2, . . . , n, j “

1, 2, . . . ,m, polynomial orders p and q, and knot vectors Ξ “ tξ1, ξ2, . . . , ξn`p`1u, and
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Figure 3.3: Example of a B-spline, piecewise quadratic curve in R2. Basis functions
and knot vectors as in Figure (3.2) (Cottrell et al. (2009)).

H “ tη1, η2, . . . , ηm`q`1u, a tensor product B-spline surface is defined by

Spξ, ηq “
n
ÿ

i“1

m
ÿ

j“1

Ni,ppξqMj,qpηqBi,j, (3.13)

where Ni,p and Mj,q are univariate B-spline basis functions of order p and q, corre-

sponding to knot vectors Ξ and H, respectively.

In Figure 3.4, an example of B-spline surface and the corresponding control net is

shown.

Figure 3.4: The control net and mesh for the bi-quadratic B-spline surface with
Ξ “ t0, 0, 0, 0.5, 1, 1, 1u and H “ t0, 0, 0, 1, 1, 1u (Cottrell et al., 2009).

Tensor product B-spline solids are defined in an analogous fashion to B-spline sur-

faces.
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Definition 3.3.5 (B-spline Solid). Given a control lattice tBi,j,ku, i “ 1, 2, . . . , n, j “

1, 2, . . . ,m, k “ 1, 2, . . . , l, polynomial orders p, q and r, and knot vectors Ξ “

tξ1, ξ2, . . . , ξn`p`1u, H “ tη1, η2, . . . , ηm`q`1u, and Z “ tζ1, ζ2, . . . , ζl`r`1u, a B-spline

solid is defined by

Spξ, η, ζq :“
n
ÿ

i“1

m
ÿ

j“1

l
ÿ

k“1

Ni,ppξqMj,qpηqLk,rpζqBi,j,k . (3.14)

3.3.1 Refinement Strategies

There are a number of ways to enrich B-spline basis while leaving the underlying

geometry and its parameterization unchanged. The basic mechanisms of B-spline

refinement have subtle differences with their finite element counterparts and these

lead to a richer overall refinement space Cottrell et al. (2009).

Knot Insertion

Let Ξ “ tξ1, ξ2, . . . , ξn`p`1u, be a knot vector and let ξ P rξk, ξk`1r be a desired knot.

Then, a new pn ` 1q basis can be formed using the recursion formulas (3.10) and

(3.11), with the new knot vector Ξ “ tξ1, ξ2, . . . , ξk, ξ, ξk`1, . . . , ξn`p`1u. The new

pn` 1q control points, tB1, B2, . . . , Bn`1u, can be obtained from the original control

points, tB1, B2, . . . , Bnu by

Bi “ αiBi ` p1´ αiqBi´1 , (3.15)

where

αi “

$

’

&

’

%

1, 1 ď i ď k ´ p,
ξ´ξi

ξi`p´ξi
, k ´ p` 1 ď i ď k,

0, k ` 1 ď i ď n` p` 2.

(3.16)

Knot insertion is analogous to h-refinement, and can be carried out such that the

curve is unchanged, geometrically or parametrically. Existing knot values can be

repeated, but in doing so, the continuity of the basis may be reduced.
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Order Elevation

Order elevation is the equivalent of p-refinement in finite element analysis, and can

be carried out without changing the geometry or its parameterization. Each unique

knot value in the knot vector Ξ must be repeated to preserve the discontinuities in

the pth derivative of the curve being elevated. The number of new control points

introduced due to order elevation, depend on the multiplicities of the existing knots.

k-refinement

k-refinement is a consequence of the non-commutative nature of the order in which

order elevation and knot insertions are carried out. That is, if knot insertion is carried

out on a given knot vector followed by order elevation, the resulting knot vector will

not be the same, in terms of the continuity at the knots, as the knot vector produced

when order elevation is first carried out before knot insertion. The latter procedure

is what is referred to as k-refinement and has no analogue in standard finite element

analysis. In Hughes et al. (2005), the advantages of k-refinement are outlined with

an example for the 1-dimensional case.

3.3.2 Non-Uniform Rational B-Splines (NURBS)

There are some desired geometric objects in Rd that can not be constructed directly

using B-splines. These can however, be obtained by projective transformations of

B-spline entities in Rd`1, d “ 1, 2, 3. In particular, circles and ellipses, and conic sec-

tions in general, can be exactly constructed by projective transformations of piecewise

quadratic curves, see Figure 3.5.

The projective transformation of a B-spline curve yields a rational polynomial of the

form CRpξq “ fpξq{gpξq, where f and g are piecewise polynomials. The construction
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of a rational B-spline curve in Rd proceeds as follows.

Figure 3.5: Circle in R2 constructed by projective transformation of piecewise
quadratic B-spline in R3. (a) Projective transformation of ”projective control points“
yields control points. Weight wi is the z-component of tBw

i u. (b) Projective trans-
formation of B-spline curve Cwpξq yields curve Cpξq. (Hughes et al. (2005)).

Let tBw
i u be a set of control points for a B-spline curve in Rd`1 with knot vector Ξ,

also referred to as the ”projective” control points for the NURBS curve in Rd. The

following relations are used to obtain the control points in Rd from the projective

control points:

pBiqj “ pB
w
i qj{wi, j “ 1, 2, . . . , d, (3.17)

wi “ pB
w
i qd`1. (3.18)

Where pBiqj is the jth component of the vector Bi, etc. and wi is the ith weight.

The weighting function W is defined as

W pξq “
n
ÿ

i“1

Ni,ppξqwi , (3.19)

where Ni,ppξq is the standard B-spline basis function.

In Figure 3.5(a), the weights are the vertical coordinates of the control points defining

the piecewise quadratic B-spline curve in R3. Then, the rational basis functions and

NURBS curve are defined as

Rp
i pξq “

Ni,ppξqwi
řn
i“1Ni,ppξqwi

“
Ni,ppξqwi
W pξq

, and, (3.20)
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Cpξq “
n
ÿ

i“1

Rp
i pξqBi . (3.21)

Analogously, rational surfaces and solids are given, respectively, in terms of the

rational basis functions as

Rp,q
i,j pξ, ηq “

Ni,ppξqMj,qpηqwi,j
řn
î“1

řm
ĵ“1Nî,ppξqMĵ,qpηqwî,ĵ

, (3.22)

Rp,q,r
i,j,k pξ, η, ζq “

Ni,ppξqMj,qpηqLk,rpζqwi,j,k
řn
î“1

řm
ĵ“1

řl
k̂“1Nî,ppξqMĵ,qpηqLk̂,rpζqwî,ĵ,k̂

. (3.23)

3.3.3 NURBS as a Basis for Analysis

Over the years, NURBS have remained the mainstay of geometric design due to their

flexibility and precision. In this section they are discussed in the setting of analy-

sis where their unique properties have been shown to be ideally suited. NURBS

have generalized and provided an improvement to the traditional piecewise polyno-

mial basis functions, yielding more accuracy and robustness across a wide array of

applications (Cottrell et al., 2009).

The Isoparametric Concept

The use of the same basis for both geometry and analysis is referred to as the

isoparametric concept. In classical finite element analysis, the isoparametric concept

is characterized by the use of the basis chosen to approximate the unknown solution

fields, to also approximate the known geometry. Isogeometric analysis on the other

hand, involves the use of a basis capable of exactly representing the known geometry,

which is then used as a basis for the fields to be approximated. This logical shift

makes it possible to utilize all of the information that are present in a problem.

Several theorems regarding convergence for NURBS based isogeometric analysis have

been shown in Bazilevs et al. (2006). The most basic convergence requirements in
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many numerical methods can be achieved by a reasonably smooth isoparametric

basis that is also a partition of unity. Conditions which NURBS have been shown to

satisfy. According to Hughes (2000), basis that satisfy the following,

1. C1 on the element interiors,

2. C0 on the element boundaries,

3. complete,

are sufficiently equipped to obtain basic convergence proofs for a wide class of prob-

lems.

The first two requirement are satisfied by most basis one might consider in numerical

methods. The third condition, requires that, on any given element K, the basis be

capable of representing all linear functions. That is, given a basis tNau
nen
a“1 (nen, being

the number of ”element nodes“ in K) for the solution space, completeness demands

that there exist coefficients da such that, for arbitrary constants C0, C1, C2, and C3,

uh|K ”
nen
ÿ

a“1

Nada “ C0 ` C1x` C2y ` C3z. (3.24)

The last property has been found to be satisfied by any isoparametric basis that is

also a partition of unity. This can be seen by noting that, for each point x P K there

exists a parameter ξ such that

xpξq ”

$

&

%

xpξq
ypξq
zpξq

,

.

-

“

nen
ÿ

a“1

Napξq

$

&

%

xa
ya
za

,

.

-

, (3.25)

where xa, ya and za are the components of the ath vector-valued coefficient defining

the geometry in element K. Now, as the basis is a partition of unity, at that same
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point ξ we have

nen
ÿ

a“1

Napξq ” 1 . (3.26)

Inserting (3.25) and (3.26) into (3.24) and solving for da gives

da “ C0 ` C1xa ` C2ya ` C3za . (3.27)

Thus, the isoparametric concept and the partition of unity sufficiently ensure com-

pleteness. In addition, they are essential to ensuring that isogeometric analysis will

result in convergent methods for varying choices of element technology, NURBS in-

cluded.

Taking the Napξq’s as NURBS functions, and txa, ya, zau
T as the components of a

control point Ba, Φ : pΩ Ñ Ω defines a geometrical mapping, and other functions

can be built over the entire parametric domain in a similar way. For instance, let

puh : pΩ Ñ R be defined by

puhpξq ”

nnp
ÿ

A“1

NApξqdA . (3.28)

nnp is the total number of control variables (nodes or knots) in the domain. The

dA are the control variables and as with control points, the non-interpolatory nature

of the basis prevents strictly interpreting the control variables as can be done for

nodal values in FEA. The function then can be defined over the physical domain by

considering a composition with the inverse of the geometrical mapping, such that,

uh : Ω Ñ R is given by;

uh “ puhpξq ˝ Φ´1 . (3.29)

Due to the fact that the geometrical mapping is invertible, uh is usually used to

refer to the function irrespective of the coordinates being used (that is, physical or

32



parametric domain). The properties of uh, such defined, follow from those of the

basis. Refinement of the basis can also be carried out without affecting the geometry

or its parameterization.

3.4 The Model Biharmonic Problem

Let us consider as a model problem the biharmonic equation.

Find u : Ω Ă Rd Ñ R, d “ 1, 2, 3, such that

∆2u “ f in Ω,
u “ g0

n ¨∇u “ g1

on ΓD,
on ΓD,

*

Dirichlet boundary conditions,

∆u “ g2

n ¨∇∆u “ g3

on ΓN ,
on ΓN ,

*

Neumann boundary conditions,

,

/

/

/

/

.

/

/

/

/

-

(3.30)

where ΓD
Ť

ΓN “ Γ “ BΩ, ΓD
Ş

ΓN “ H, and n is the unit outward normal vector

on BΩ. The functions f, g0, g1, g2, g3, are all given.

For sufficiently smooth domain, and under certain restrictions on g0, . . . , g3, a unique

solution is known to exist.

3.4.1 The Variational Formulation

The technique begins by defining a weak (variational) counterpart of (3.30).

To obtain the weak formulation, multiply through (3.30)(a) by a test function v,

integrate by parts and incorporate the pertinent boundary conditions.

ż

Ω

fv dΩ “

ż

Ω

p∆2uqv dΩ . (3.31)

In (3.31), since ∆2u “ ∆∆u, let ∆u “ w.

Replacing ω in (3.9) by w and ϕ by v and integrating, and using (3.7) gives

ż

Ω

p∆wqv dΩ`

ż

Ω

∇v ¨∇w dΩ “

ż

Ω

∇ ¨ pv∇wq dΩ,
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“

ż

BΩ

vpn ¨∇wq dΓ .

Using the substitution ∆u “ w gives
ż

Ω

p∆2uqv dΩ`

ż

Ω

∇v ¨∇∆u dΩ “

ż

BΩ

vpn ¨∇∆uq dΓ . (3.32)

Next, let ϕ “ ∆u and ω “ v. By using (3.9),

∇ ¨ p∆u∇vq “ ∇∆u ¨∇v `∆u∆v.

Taking integrals, and applying (3.7) again gives
ż

Ω

∆u∆v dΩ`

ż

Ω

∇∆u ¨∇v dΩ “

ż

BΩ

∇ ¨ p∆u∇vq dΩ,

“

ż

BΩ

∆upn ¨∇vq dΓ . (3.33)

Substituting (3.33) into (3.32) gives
ż

Ω

p∆2uqv dΩ´

ż

Ω

∆u∆v dΩ`

ż

BΩ

∆upn ¨∇vq dΓ “

ż

BΩ

vpn ¨∇∆uq dΓ .

Which can be rewritten as
ż

Ω

p∆2uqv dΩ “

ż

Ω

∆u∆v dΩ`

ż

BΩ

vpn ¨∇∆uq dΓ´

ż

BΩ

∆upn ¨∇vq dΓ .

Thus, from (3.31), we now have
ż

Ω

fv dΩ “

ż

Ω

∆u∆v dΩ`

ż

BΩ

vpn ¨∇∆uq dΓ´

ż

BΩ

∆upn ¨∇vq dΓ .

Substituting for the appropriate boundary conditions, @v P V0,
ż

Ω

fv dΩ “

ż

Ω

∆u∆v dΩ`

ż

ΓN

vg3 dΓ´

ż

ΓN

g2pn ¨∇vq dΓ .

The variational or weak formulation of (3.30) reads as follows:

Find u P Vg, such that

apu, vq “ lpvq, @v P V0, (3.34)
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where, the bilinear form and linear form are given by

apu, vq “

ż

Ω

∆u∆v dΩ and lpvq “

ż

Ω

fv dΩ´

ż

ΓN

vg3 dΓ`

ż

ΓN

g2pn ¨∇vq dΓ,

respectively.

The hyperplane Vg and test space V0 are given by

Vg :“ tu : u P H2
pΩq, u|ΓD “ g0, n ¨∇u|ΓD “ g1u,

V0 :“ tv : v P H2
pΩq, v|ΓD “ 0, n ¨∇v|ΓD “ 0u.

It is clear that ap¨, ¨q is symmetric. The solution to (3.34) is called a weak solution.

Existence, Uniqueness and Stability

Next, it is shown that the weak solution exists and is unique. The following theo-

rem provides the conditions necessary for the existence and uniqueness of the weak

solution to the model problem.

Theorem 3.4.1 (Lax-Milgram Lemma). Let V be a Hilbert space, let ap¨, ¨q : V ˆ

V ÝÑ R be a continuous V -elliptic bilinear form, and let f : V ÝÑ R be a continuous

linear form.

Then the abstract variational problem: Find an element u such that

u P V and @v P V, apu, vq “ fpvq,

has one and only one solution.

Proof. See (Ciarlet, 2002, Theorem 1.1.3).

In the following theorem, using Theorem 3.4.1, it is shown that the variational form

(3.34), obtained for problem (3.30), has a unique solution.

Theorem 3.4.2 (Lax-Milgram). Let V be a Hilbert space with inner product p¨, ¨q

and V0 Ă V . Let ap¨, ¨q : V ˆ V ÝÑ R be a bilinear form satisfying
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1. bounded/continuous : |apu, vq| ď µb}u}V }v}V with µb ą 0, @u, v P V,

2. coercive/V -elliptic : apv, vq ě µc}v}V , µc ą 0, @v P V .

Then, for any given g0, g1, g2, g3 P V and lp¨q P V ˚0 , the variational problem: find

u P gi ` V0, i “ 0, . . . , 3, such that

apu, vq “ lpvq, @v P V0,

has a unique solution u P gi ` V0 which fulfills the a-priori estimate

}u}V ď
1

µb
}l}V ˚0 `

ˆ

1`
µb
µc

˙

}

3
ÿ

i“0

gi}V . (3.35)

Proof. 1. First, the boundedness of the bilinear form is shown by using Cauchy-

Schwarz’s inequality as follows.

|apu, vq| “

ˇ

ˇ

ˇ

ˇ

ż

Ω

∆u∆v dΩ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

Ω

|∆u|2 dΩ

˙
1
2
ˆ
ż

Ω

|∆v|2 dΩ

˙
1
2

“ }∆u}L2pΩq}∆v}L2pΩq

ď }∆u}V }∆v}V .

2. Next, it is shown that the bilinear form ap¨, ¨q is coercive.

apv, vq “

ż

Ω

∆v∆v dΩ “ }∆v}2L2pΩq. (3.36)

Then, by the definition of the norm on V and the Poincaré-Friedrichs’ inequality

(3.6),

}v}2V “ }v}
2
L2pΩq ` }∇v}2L2pΩq ` }∆v}

2
L2pΩq

ď C2
1}∆v}

2
L2pΩq ` }∆v}

2
L2pΩq “ p1` C

2
1q}∆v}

2
L2pΩq .
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Thus

}∆v}2L2pΩq ě
1

1` C2
1

}v}2V . (3.37)

Therefore

apv, vq ě µc}v}
2
V , with µc “

1

p1` C2
1q
. (3.38)

3.4.2 Galerkin’s Method

Galerkin’s method involves constructing finite-dimensional approximations of Vg and

V0, which will be denoted by Vg,h and V0,h, respectively, such that Vg,h Ă Vg and

V0,h Ă V0.

Using the Bubnov-Galerkin approach, it is only necessary to obtain a finite dimen-

sional approximation to V0, since it is assumed that there is a given function gh P Vg,h

such that gh|ΓD “ g0 and n ¨ ∇gh|ΓD “ g1, thus, for every uh P Vg,h there exists a

unique wh P V0,h such that

uh “ wh ` gh. (3.39)

With this, the Galerkin form of (3.34) can be written as:

Given gh, g2, g3, find uh “ wh ` gh, where wh P V0,h, such that for all vh P V0,h,

apuh, vhq “ lpvhq. (3.40)

Making the substitution for uh, and rearranging gives

ż

Ω

∆pwh ` ghq∆vh dΩ “

ż

Ω

fvh dΩ´

ż

ΓN

g3vh dΓ`

ż

ΓN

g2pn ¨∇vhq dΓ,

ż

Ω

∆wh∆vh dΩ`

ż

Ω

∆gh∆vh dΩ “

ż

Ω

fvh dΩ´

ż

ΓN

g3vh dΓ`

ż

ΓN

g2pn ¨∇vhq dΓ,
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ż

Ω

∆wh∆vh dΩ “

ż

Ω

fvh dΩ´

ż

ΓN

g3vh dΓ`

ż

ΓN

g2pn ¨∇vhq dΓ´

ż

Ω

∆gh∆vh dΩ.

(3.41)

Thus, from (3.41),

apwh, vhq “ lpvhq ´ apgh, vhq. (3.42)

Which, since ap¨, ¨q is symmetric, can be rewritten as

apvh, whq “ lpvhq ´ apvh, ghq. (3.43)

3.4.3 Convergence and Error Estimates

In Tagliabue et al. (2014), the authors extended the results in Bazilevs et al. (2006),

which provided the intermediate results and the error estimates for the solution of

second order elliptic problems using the Galerkin method, to the solution of elliptic

problems of order 2m, with m ą 1. This necessitates introducing some new notation.

Let Ξ “ tξ1, ξ2, . . . , ξn`p`1u be a knot vector, where ξi is the i-th knot, with the knot

index i P t1, . . . , n`p`1u characterized by the polynomial degree p and the number

of basis functions n defining the B-spline basis, respectively. By convention, it is

assumed that ξ1 “ 0 and ξn`p`1 “ 1, such that the parametric domain is defined as

pΩ :“ pξ1, ξn`p`1q “ p0, 1q Ă R.

Let r be the number of distinct knots in Ξ and Z be the collection of the ordered

distinct knots of Ξ. That is, Z “ tζ1, . . . , ζru, with ζ1 “ ξ1 “ 0 and ζr “ ξn`p`1 “ 1.

Now, it is possible to define the concept of mesh elements in pΩ. Let pKh be a one-

dimensional mesh over pΩ, that is, the collection of sub-domains bounded by two
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distinct knots, that is

pK
ph :“ t pK “ pζj, ζj`1q : j “ 1, . . . , r ´ 1u. (3.44)

Let ph :“ maxtph
pK : pK P pKhu be the global mesh size in pΩ, where ph

pK :“ diamp pKq,

pK P pKh. Let M :“ tm1, . . . ,mru, be a vector storing the multiplicities of the knots

in Z, where mj ě 1, represents the multiplicity of the knot value ζj, j “ 1, . . . , r.

Since the basis functions are point-wise non-negative and C8-continuous everywhere

except in the knot values ζj, where they are Cp´mj -continuous, it is convenient to

define the vector K “ tk1, . . . , kru, containing the smoothness integer parameters

kj “ p´mj ` 1, j “ 1, . . . , r, such that 0 ď kj ď p. Let kmin :“ minj“2,...,r´1tkju be

the minimum smoothness parameter. With this, in the knot ζj, the basis functions

are Ckj´1-continuous.

Let pSh :“ spant pNiu
n
i“1, be the B-spline space built from the basis functions in pΩ.

pNi : pΩ ÝÑ R, for i “ 1, . . . , n, are built as described in section 3.3, and the B-splines

in pSh are globally Ckmin´1-continuous.

Extending these to the d-dimensional case gives; Ξα “ tξα1 , ξ
α
2 , . . . , ξ

α
nα`pα`1u for

α “ 1, . . . , d. Zα “ tζ
α
1 , . . . , ζ

α
rαu, Mα :“ tmα

1 , . . . ,m
α
rαu, Kα “ tk

α
1 , . . . , k

α
rαu, and

the minimum integer parameter kαmin :“ minjα“2,...,rα´1tk
α
jαu.

Then a mesh pKh in pΩ “ p0, 1qd is defined by its partition into d-dimensional ele-

ments: pKh “ t pK :“ bdα“1pζ
α
jα , ζ

α
jα`1q, 1 ď jα ď rα ´ 1u, with element size ph

pK “

diamp pKq, @ pK P pKh, and global mesh size ph :“ max
pKP pKht

ph
pKu.

For each multi-index i :“ pi1, . . . , idq in the set I “ ti “ pi1, . . . , idq : 0 ď iα ď
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nα for 1 ď α ď du, the multivariate B-spline basis functions are given by

pNi : pΩ ÝÑ R, pNipηq :“
d
ź

α“1

pNα
iαpηαq, (3.45)

with the corresponding B-spline basis function space being; pSh :“ spant pNiuiPI .

To obtain the NURBS basis functions on pΩ “ p0, 1qd, define the weighting functions

as

W : pΩ ÝÑ R, W pηq :“
ÿ

iPI

ωi
pNipηq, (3.46)

with the ith multivariate NURBS basis given as

pRi : pΩ ÝÑ R, pRipηq “
pNipηqωi

W pηq
, @i P I, (3.47)

and the corresponding NURBS space is pVh :“ spant pRiuiPI .

For the set of control points tBiuiPI Ď Rd, the following geometrical mapping from

pΩ (parametric space) to Ω (physical space) is given.

Φ : pΩ ÝÑ Ω Ď Rd, such that Φpηq “
ÿ

iPI

RipηqBi. (3.48)

Using this mapping, the physical mesh Kh :“ tK “ Φp pKq : pK P pKhu can be defined,

with global mesh size h :“ maxt}∇Φ}L8p pKq
ph

pK : pK P pKhu.

The NURBS space in Ω is the ”push-forward“ of pVh in pΩ, that is,

Vh :“ spant pRi ˝ Φ´1
uiPI “ spantRiuiPI ,

where Ri is the NURBS basis in the physical domain.
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Remark 3.4.1. Vh as defined above is equivalent to V0,h defined in section 3.4.2.

In Bazilevs et al. (2006), the interpolation error estimate was based on the introduc-

tion of the support extension pK of an element pK of the mesh pKh in pΩ, defined as

the union of the supports of basis functions whose support intersect the element pK.

The physical support extension of an element K “ Φp pKq of the physical mesh Kh is

then taken as the image of pK under the geometrical mapping Φ and is denoted by

K, that is, K :“ Φp pKq.

Given a function pv P L2ppΩq defined in the parametric domain, the projective operator

over pSh, Π
pSh , is defined as

Π
pSh : L2

ppΩq ÝÑ pSh, Π
pShpv :“

ÿ

iPI

λippvq pNi, (3.49)

where the linear functionals λi P L
2,˚ppΩq, determine the dual basis for the set of

B-splines (λjp pNiq :“ δi,j for i, j P I).

The corresponding projective operator over the NURBS space pVh in the parameter

domain, Π
ph, is defined as

Π
ph : L2

ppΩq ÝÑ pVh, Π
phpv :“

Π
pShpWpvq

W
, @pv P L2

ppΩq. (3.50)

Then, the projective operator over Vh can be defined as

Πh : L2
pΩq ÝÑ Vh, Πhv :“ pΠ

phppvqq ˝ Φ´1 . (3.51)

The following theorem provides the interpolation error estimates for an element K,

with respect to its support extension.
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Theorem 3.4.3 (Local interpolation error estimates). Given integers l and s such

that 0 ď l ď s ď p ` 1 and s ě m, for a function u P L2pΩq
Ş

HspKq, the estimate

for the local interpolation error reads:

|u´ Πhu|HlpKq ď Cshapeh
s´l
K

s
ÿ

i“0

}∇Φ}i´s
L8p pKq

}u}HipKq, (3.52)

where hK is the element size of K P Kh and ∇Φ denotes the deformation tensor of

the geometrical mapping Φ.

Proof. See [Theorem 3.1 in Tagliabue et al. (2014)].

The next couple of propositions provide the global interpolation error estimates for

NURBS-based IgA for sufficiently smooth basis.

Proposition 3.4.4. Given integers l and s such that 0 ď l ď s ď p` 1 and s ě m,

for a function u P HspΩq, then

ÿ

KPKh

|u´ Πhu|
2
HlpKq ď Cshapeh

2ps´lq
}u}2HspΩq. (3.53)

Proof. See [Proposition 3.1 in Tagliabue et al. (2014)].

Proposition 3.4.5. (Global interpolation error estimate.) Under the hypothesis of

proposition 3.4.4, if in addition l ď kmin, then

|u´ Πhu|HlpΩq ď Cshapeh
s´l
}u}2HspΩq. (3.54)

Proof. See [Proposition 3.2 in Tagliabue et al. (2014)].

Corollary 3.4.6. Let u P HrpΩq be a function defined in the physical domain Ω.

Given an integer l such that 0 ď l ď p` 1, l ď r, then

|u´ Πhu|HlpΩq ď Cshapeh
δ´l
}u}2HrpΩq, (3.55)

where δ :“ mintp` 1, ru
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Proof. See [Corollary 3.1 in Tagliabue et al. (2014)].

Finally, the next theorem provides the a-priori error estimates for elliptic PDEs of

order 2m with m ě 1.

Theorem 3.4.7 (A-priori error estimate in norm Hm). Let u P HrpΩq be the exact

solution of (3.34) and uh P Vh the approximation solution obtained with the NURBS-

based IgA method with the basis functions of global regularity kmin ě m. Then, the

following a-priori error estimate holds:

}u´ uh}HmpΩq ď Chγ}u}HrpΩq, (3.56)

where γ :“ mintp` 1, ru ´m and C :“
µb
µc
Cshape.

Proof. See [Theorem 3.2 in Tagliabue et al. (2014)].
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Chapter 4

Results

4.1 Introduction

In this chapter, a dG-IgA scheme is derived for the biharmonic problem. The ex-

istence and uniqueness of the solution to the model problem is shown, and a-priori

error estimates are presented for the scheme.

4.2 Discontinuous Galerkin Isogeometric Analysis

The discontinuous Galerkin methods provide a framework for working with, or in

solution spaces whose functions are not necessarily continuous over patch interfaces.

The method has been employed together with Isogeometric analysis to handle multi-

patch cases, which occur when dealing with complex and, or multiply connected

geometries. The other option for handling multiple patches in Isogeometric analysis

is by introducing constraint equations which are imposed strongly as described in

Cottrell et al. (2009).

Since the dG methodology is employed to enforce continuity weakly across patch
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interfaces for problem (3.30), it is necessary to first define the domain Ω as the union

of non-overlapping sub-domains (patches).

Let Th :“ tΩiu
N
i“1, where Ωi are the sub-domains, i “ t1, . . . , Nu, such that

Ω “
N
ď

i“1

Ωi, with Ωi

č

Ωj “ H, if i ‰ j.

Ωi ΩjFij

ni

Figure 4.1: An example of a multipatch domain, Ω, with sub-domains or patches,
Ωi,Ωj, with the corresponding interface and interior unit normal.

Let Fij “ BΩi

Ş

BΩj be the interface between patches Ωi and Ωj, and FI be the

collection of all such interfaces. Let Fi “ BΩi

Ş

BΩ, and FD be the collection of all

such patch boundaries, and let F “ FI

Ť

FD. It is conventional to assume that the

parametric domain, pΩ, has unit length, that is, pΩ “ r0, 1sd, d “ 1, 2, 3.

Each patch Ωi is associated with knot vectors, Ξ
piq
α , on pΩ, α “ 1, . . . , d, i “ 1, . . . , N,

that create a mesh pKh,i “ t pKu (parametric mesh), where pK are the elements created

by the distinct knot spans in Ξ
piq
α , as described in section 3.4.3.

pKh,i “ t pK :“ bdα“1pζ
α
j , ζ

α
j`1q, 1 ď j ď rα ´ 1unit“1 .

For each pK P pKh,i, let ph
pK denote its diameter and phi :“ maxtph

pKu denote the mesh-

size of pKh,i. The following are assumed:

1. quasi-uniformity: for every pK P pKh,i, it holds that, phi „ ph
pK , i.e., there exist

positive constants a, b, such that, aphi ď ph
pK ď bphi .
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2. for the mesh element edges e
pK Ă B

pK , ph
pK „ e

pK .

For each multi-index j :“ pj1, . . . , jdq in the set J :“ tj “ pj1, . . . , jdq : 0 ď jα ď

nα, for 1 ď α ď du, the multivariate B-spline functions are given by

pN
piq
j : pΩ Ñ R, pN

piq
j pηq :“

d
ź

α“1

pNjαpηαq , (4.1)

with the corresponding B-spline function space

pSh,i :“ spant pN
piq
j ujPJ . (4.2)

To obtain the NURBS functions on pΩ, the weighting functions are defined as

W piq : pΩ ÝÑ R, W piq
pηq :“

ÿ

jPJ
ωj

pN
piq
j pηq,

with the multivariate NURBS given by

pRj : pΩ ÝÑ R, pRjpηq “
pN
piq
j pηqωj

W piqpηq
, @j P J , (4.3)

with the corresponding NURBS space

pVh,i :“ spant pRjujPJ .

For the set of control points tB
piq
j ujPJ Ă Rd, each sub-domain Ωi P Th, is exactly

represented through the following geometrical mapping from pΩ (parametric domain)

to Ωi (physical domain)

Φi : pΩ ÝÑ Ωi Ă Rd, Φipηq “
ÿ

jPJ

pR
piq
j pηqB

piq
j :“ x P Ωi, (4.4)

where η :“ Φ´1
i pxq.

Using Φi, the physical mesh Kh,i :“ tK “ Φip pKq, pK P pKh,iu can be constructed for

every Ωi.
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Let hK denote the diameter of K. If hi “ maxthK : K P Kh,iu is the mesh size of

sub-domain Ωi, then by definition of the geometrical mapping given in (4.4), we have

the equivalence relation phi „ hi.

The mesh of Ω is taken to be

KhpΩq “
N
ď

i“1

Kh,i .

For the case of matching meshes, h “ hi, with hi being constant for i P t1, . . . , Nu.

Fij

Ωj

Ωi

Φi

Φj

Ω̂

K̂t

Kt

0 1
0

1

Figure 4.2: Transformations from the parameter domain, pΩ, to the physical domain,

Ω, with ΦippΩq “ Ωi.

Next, using the “push-forward”, Φ´1
i , the B-spline space on Ω is given by

ShpThq :“ Sh,1 ˆ ¨ ¨ ¨ ˆ Sh,N , (4.5)

with, Sh,i :“

"

N
piq
j

ˇ

ˇ

ˇ

Ωi
: N

piq
j pηq “

pN
piq
j ˝ Φ´1

i pxq, @ pN
piq
j P pSh,i

*

.

The NURBS space on Ω is similarly defined as

VhpThq :“ Vh,1 ˆ ¨ ¨ ¨ ˆ Vh,N (4.6)

with, Vh,i :“ tRj|Ωi
: Rjpηq “ pRj ˝ Φ´1

i pxq, @Rj P pVh,iu.
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The B-spline space Sh,i or NURBS space Vh,i are used for approximating the solution

to the weak form (3.34) in every sub-domain Ωi.

For a function v P H1pΩ, Thq, and F P F , let vi “ v|BΩi
Ş

F and vj “ v|BΩj
Ş

F , then

the jumps and averages are defined as

Average: tvu :“
1

2
pvi ` vjq; Jump: rvs :“ vi ´ vj, for Fij P FI , (4.7)

Average: tvu :“ vi; Jump: rvs :“ vi, for Fi P FD. (4.8)

For what follows, depending on the context, n “ ni is taken to be the external unit

normal vector associated with each Fi P FD or the unit normal vector directed from

Ωi to Ωj, associated with each interface Fij P FI .

4.3 Interior Penalty Variational Formulation

Here, for simplicity, the Dirichlet version of problem (3.30) is considered, that is:

Find u : Ω Ñ R, such that

∆2u “ f in Ω, (4.9)

u “ g0 on BΩ, (4.10)

n ¨∇u “ g1 on BΩ. (4.11)

Multiplying the model problem (4.9) by a test function v and integrating by parts

twice over each sub-domain Ωi, i “ 1, . . . , N, gives for u P H4pΩiq,
ż

Ωi

fvdΩ “

ż

Ωi

∆u∆vdΩ´

ż

BΩi

pn ¨∇vq∆udΓ`

ż

BΩi

pn ¨∇∆uqvdΓ, @v P H2
pΩiq.

(4.12)

Summing (4.12) over all sub-domains gives

N
ÿ

i“1

ż

Ωi

fvdΩ “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ´
N
ÿ

i“1

ż

BΩi

pn ¨∇vq∆udΓ`
N
ÿ

i“1

ż

BΩi

pn ¨∇∆uqvdΓ.

(4.13)
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The sum of the boundary integrals are rewritten as follows

N
ÿ

i“1

ż

BΩi

pn ¨∇vq∆udΓ “
ÿ

FijPFI

ż

Fij

n ¨ p∇vi∆ui ´∇vj∆ujqdΓ

`
ÿ

FiPFD

ż

Fi

pn ¨∇viq∆uidΓ, (4.14)

and

N
ÿ

i“1

ż

BΩi

pn ¨∇∆uqvdΓ “
ÿ

FijPFI

ż

Fij

n ¨ p∇∆uiqvi ´ n ¨ p∇∆ujqvjdΓ

`
ÿ

FiPFD

ż

Fi

pn ¨∇∆uiqvidΓ. (4.15)

Substituting (4.14) and (4.15) into (4.13) yields

N
ÿ

i“1

ż

Ωi

fvdΩ “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ´
ÿ

FPF

ż

F

rn ¨∇v∆usdΓ

`
ÿ

FPF

ż

F

rpn ¨∇∆uqvsdΓ, (4.16)

where F P F means Fij P FI , or Fi P FD.

For the fluxes at each interface Fij P FI , using the definitions of the jumps and

averages (4.8), we have the following relation

rn ¨∇v∆us “ n ¨ p∇vi∆ui ´∇vj∆ujq

“
1

2
pn ¨∇viq∆ui `

1

2
pn ¨∇vjq∆ui ´

1

2
pn ¨∇viq∆uj ´

1

2
pn ¨∇vjq∆uj

`
1

2
pn ¨∇viq∆ui `

1

2
pn ¨∇viq∆uj ´

1

2
pn ¨∇vjq∆ui ´

1

2
pn ¨∇vjq∆uj

“
1

2
pn ¨∇viqp∆ui ´∆ujq `

1

2
pn ¨∇vjqp∆ui ´∆ujq
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`
1

2
pn ¨∇viqp∆ui `∆ujq ´

1

2
pn ¨∇vjqp∆ui `∆ujq

“ tn ¨∇vur∆us ` t∆uurn ¨∇vs. (4.17)

By the regularity of the solution u, it follows that ∆u|BΩi P H
3
2 pBΩiq by an extension

of Theorem 3.2.2, thus, r∆us “ 0. Therefore

rn ¨∇v∆us “ rn ¨∇vst∆uu. (4.18)

By using the regularity of the solution, and since ∇∆u|BΩi P H
1
2 pBΩiq, it follows that

rpn ¨∇∆uqvs “ tn ¨∇∆uurvs ` rn ¨∇∆ustvu “ tn ¨∇∆uurvs. (4.19)

Using the relations (4.18) and (4.19),

ÿ

FPF

ż

F

rn ¨∇v∆usdΓ “
ÿ

FPF

ż

F

t∆uurn ¨∇vsdΓ, (4.20)

and

ÿ

FPF

ż

F

rpn ¨∇∆uqvsdΓ “
ÿ

FPF

ż

F

tn ¨∇∆uurvsdΓ. (4.21)

Putting (4.20) and (4.21) into (4.16) gives

N
ÿ

i“1

ż

Ωi

fvdΩ “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ´
ÿ

FPF

ż

F

t∆uurn ¨∇vsdΓ

`
ÿ

FPF

ż

F

tn ¨∇∆uurvsdΓ. (4.22)

Due to the regularity of the solution u, both the jump of the solution and the jump

of the fluxes of the solution are zero, i.e., rus “ 0 and rn ¨∇us “ 0. The following

consistency terms can be added to (4.22).

β1

ÿ

FPF

ż

F

t∆vurn ¨∇usdΓ` β2

ÿ

FPF

ż

F

tn ¨∇∆vurusdΓ. (4.23)
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Where

ÿ

FPF

ż

F

t∆vurn ¨∇usdΓ “
ÿ

FijPFI

ż

Fij

t∆vurn ¨∇usdΓ

`
ÿ

FiPFD

ż

Fi

t∆vurn ¨∇u´ g1sdΓ,

and

ÿ

FPF

ż

F

tn ¨∇∆vurusdΓ “
ÿ

FijPFI

ż

Fij

tn ¨∇∆vurusdΓ

`
ÿ

FiPFD

ż

Fi

tn ¨∇∆vuru´ g0sdΓ,

and β1, β2 P r´1, 1s.

The following consistency terms are added to penalize the jumps of the solution and

the jumps of the fluxes of the solution

J0pu, vq “
ÿ

FijPFI

σ0

h3
i

ż

Fij

rusrvsdΓ`
ÿ

FiPFD

σ0

h3
i

ż

Fi

pu´ g0qvdΓ, (4.24)

J1pu, vq “
ÿ

FijPFI

σ1

hi

ż

Fij

rn ¨∇usrn ¨∇vsdΓ`
ÿ

FiPFD

σ1

hi

ż

Fi

pn ¨∇u´ g1qpn ¨∇vq dΓ,

(4.25)

where σ0, σ1 are positive constants called penalty parameters.

Finally, the interior penalty variational scheme reads: Find u P H4pΩ, Thq such that,

ahpu, vq “ Lpvq, @v P H4
pΩ, Thq, (4.26)

where the bilinear form is given by

ahpu, vq “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ

´
ÿ

FPF

ż

F

t∆uurn ¨∇vsdΓ` β1

ÿ

FPF

ż

F

t∆vurn ¨∇usdΓ
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`
ÿ

FPF

ż

F

tn ¨∇∆uurvsdΓ` β2

ÿ

FPF

ż

F

tn ¨∇∆vurusdΓ

`
ÿ

FPF

σ0

h3
i

ż

F

rusrvsdΓ`
ÿ

FPF

σ1

hi

ż

F

rn ¨∇usrn ¨∇vsdΓ, (4.27)

and the linear form is given as

Lpvq “
N
ÿ

i“1

ż

Ωi

fvdΩ`
ÿ

FiPFD

ż

Fi

ˆ

σ0

h3
i

vh ` β2n ¨∇∆vh

˙

g0dΓ

`
ÿ

FiPFD

ż

Fi

ˆ

σ1

hi
pn ¨∇vhq ` β1∆vh

˙

g1dΓ. (4.28)

The choice of β1 and β2 yields different schemes.

1. Taking β1 “ β2 “ ´1 gives the Semi-Symmetric Interior Penalty Galerkin 1

(SSIPG1) scheme.

2. Taking β1 “ β2 “ `1 gives the Semi-Symmetric Interior Penalty Galerkin 2

(SSIPG2) scheme.

3. Taking β1 “ ´1, β2 “ `1 gives the Symmetric Interior Penalty Galerkin

(SIPG) scheme.

4. Taking β1 “ `1, β2 “ ´1 gives the Non-symmetric Interior Penalty Galerkin

(NIPG) scheme.

The analysis in this thesis is restricted to the SIPG scheme.

4.4 dG-IgA Approximation

Let Vh Ă H4pΩ, Thq, be the finite dimensional NURBS subspace. Then, the dG-IgA

scheme reads: find uh P Vh such that

ahpuh, vhq “ Lpvhq, @vh P Vh, (4.29)
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where the bilinear form is given by

ahpuh, vhq “
N
ÿ

i“1

ż

Ωi

∆uh∆vhdΩ

´
ÿ

FPF

ż

F

rn ¨∇vhst∆uhudΓ´
ÿ

FPF

ż

F

rn ¨∇uhst∆vhudΓ

`
ÿ

FPF

ż

F

tn ¨∇∆uhurvhsdΓ`
ÿ

FPF

ż

F

tn ¨∇∆vhuruhsdΓ

`
ÿ

FPF

σ0

h3
i

ż

F

ruhsrvhsdΓ`
ÿ

FPF

σ1

hi

ż

F

rn ¨∇uhsrn ¨∇vhsdΓ, (4.30)

and the linear form is given as

Lpvhq “
N
ÿ

i“1

ż

Ωi

fvhdΩ`
ÿ

FiPFD

ż

Fi

ˆ

σ0

h3
i

vh ` n ¨∇∆vh

˙

g0dΓ

`
ÿ

FiPFD

ż

Fi

ˆ

σ1

hi
pn ¨∇vhq ´∆vh

˙

g1dΓ. (4.31)

Next, the following discrete norm is defined.

}v}2h “
N
ÿ

i“1

}∆v}2L2pΩiq
`

ÿ

FPF

σ0

h3
i

}rvs}2L2pF q `
ÿ

FPF

σ1

hi
}rn ¨∇vs}2L2pF q, v P H2

pΩ, Thq.

(4.32)

Proposition 4.4.1. (4.32) is a norm on H2pΩ, Thq.

Proof. For some v P H2pΩ, Thq, }∆v}L2pΩiq ě 0, for i “ 1, . . . , N.

}rvs}2L2pF q ě 0, and }rn ¨∇vs}2L2pF q ě 0, @F P F .

Thus, }v}h ě 0, @v P H2pΩ, Thq.

If }v}h “ 0, then ∆v “ 0 in Ωi, @i “ 1, . . . , N, and the jumps rvs and rn ¨∇vs are

zero on the interfaces Fij P FI . Also, for }v}h “ 0, it means vi “ 0 and n ¨∇vi “ 0

on Fi P FD. Thus, v “ 0 on the whole domain Ω. The rest of the axioms can be

proven.
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4.5 Some Properties

In this section, some of the properties of the bilinear form obtained for the dG-IgA

scheme for the problem (4.9) are shown. In the following theorem, it is shown that,

the discontinuous weak formulation of problem (4.9) is consistent with the usual

variational formulation of the problem, and thus consistent with the strong form of

the problem.

Theorem 4.5.1 (Consistency). Assume that the weak solution u of problem (4.9)-

(4.11) belongs to H4pΩ, Thq, then u satisfies the variational problem (4.26). Con-

versely, if u P H4pΩq
Ş

H4pΩ, Thq, satisfies (4.26), then u is the solution to problem

(4.9)-(4.11).

Proof. The first part follows from the derivation in section 4.3. For the converse,

first take v P C80 pΩiq, then (4.26) reduces to

N
ÿ

i“1

ż

Ωi

fvdΩ “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ.

Which yields in the distributional sense, for all Ωi P Th,

∆2u “ f, in Ωi. (4.33)

Next, let F12 be the interface between two adjacent sub-domains Ω1 and Ω2, and

take v P H4
0 pΩ1

Ť

Ω2q, extending it by zero over the rest of Ω. Then, multiplying

through (4.33) by such v and integrating by parts twice gives

ż

Ω1
Ť

Ω2

fvdΩ “

ż

Ω1
Ť

Ω2

∆u∆vdΩ´

ż

F12

n ¨∇vr∆usdΓ`

ż

F12

rn ¨∇∆usvdΓ.

On the other hand, for v P H4
0 pΩ1

Ť

Ω2q, (4.26) reduces to

ż

Ω1
Ť

Ω2

fvdΩ “

ż

Ω1
Ť

Ω2

∆u∆vdΩ.
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Thus, @v P H4
0 pΩ1

Ť

Ω2q,
ż

F12

n ¨∇vr∆usdΓ “

ż

F12

rn ¨∇∆usvdΓ.

But this is only possible if r∆us|F12 “ 0, and rn ¨∇∆us|F12 “ 0 in L2pF12q. Since this

holds over all F P F , it implies that ∆2u P L2pΩq. Hence globally,

∆2u “ f in Ω. (4.34)

Next, let v P H4pΩq
Ş

H2
0 pΩq, then multiplying through (4.34) by such v and inte-

grating by parts twice gives

N
ÿ

i“1

ż

Ωi

fvdΩ “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ.

On the other hand, for v P H4pΩq
Ş

H2
0 pΩq, (4.26) reduces to

N
ÿ

i“1

ż

Ωi

fvdΩ “
N
ÿ

i“1

ż

Ωi

∆u∆vdΩ´
ÿ

FiPFD

ż

Fi

∆vpn ¨∇u´ g1qdΓ

`
ÿ

FiPFD

ż

Fi

pn ¨∇∆vqpu´ g0qdΓ.

Comparing the two, it can be concluded that, for each Fi P FD,
ż

Fi

∆vpn ¨∇u´ g1qdΓ “

ż

Fi

pn ¨∇∆vqpu´ g0qdΓ.

But since v is arbitrary, this is only possible if

pu´ g0q|Fi “ 0, and pn ¨∇u´ g1q|Fi “ 0.

Thus

u “ g0 on Fi “ BΩi

č

BΩ,

n ¨∇u “ g1 on Fi “ BΩi

č

BΩ,

which are the Dirichlet boundary conditions of problem (4.9)-(4.11).
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In order to present subsequent results, including the coercivity and boundedness

properties of the bilinear form, the following lemmata are required.

The scaled trace inequality for a patch is given by the following lemma.

Lemma 4.5.2. Let K P Kh,i, i “ 1, . . . , N and pK “ Φ´1
i pKq. Then the scaled trace

inequality

}v}L2pBΩiq ď Ctr,uh
´1{2
i

`

}v}L2pΩiq ` hi|v|H1pΩiq

˘

, (4.35)

holds for all v P H1pΩiq, where hi denotes the global mesh size of patch Ωi in the

physical domain, and Ctr,u is a positive constant that only depends on the quasi-

uniformity and shape regularity of the mapping Φi.

Proof. See [Chapter 2 in Moore (2017)].

Lemma 4.5.3. Let K P Kh,i, where Kh,i is the underlying mesh of Ωi. Then the

inverse inequalities

}vh}L2pBΩiq ď Cinv,0,uh
´1{2
i }vh}L2pΩiq, (4.36)

}∇vh}L2pΩiq ď Cinv,1,uh
´1
i }vh}L2pΩiq, (4.37)

hold for all vh P Vh, where Cinv,1,u and Cinv,0,u are positive constants, which are

independent of hi and Ωi P Th.

Proof. See [Moore (2017)].

Proposition 4.5.4. Let K P Kh,i, where Kh,i is the underlying mesh of Ωi. Then

the inverse inequality

}∇vh}L2pBΩiq ď Cinv,0,1,uh
´ 3

2
i }vh}L2pΩiq, (4.38)

holds for all vh P Vh, where Cinv,0,1,u “ Cinv,1,uCinv,0,u and Cinv,1,u and Cinv,0,u are as

stated in lemma 4.5.3.
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Proof. By using the inequalities (4.36) and (4.37) of Lemma 4.5.3,

}∇vh}L2pBΩiq ď Cinv,0,uh
´1{2
i }∇vh}L2pΩiq,

ď Cinv,0,uCinv,1,uh
´ 1

2
i h´1

i }vh}L2pΩiq,

“ Cinv,0,1,uh
´ 3

2
i }vh}L2pΩiq.

The next lemma is required to prove for the coercivity of the bilinear form.

Lemma 4.5.5. Let ε be a positive constant and F P F , then the estimates
ˇ

ˇ

ˇ

ˇ

ż

F

tn ¨∇∆vhurvhsdΓ

ˇ

ˇ

ˇ

ˇ

ď ε
Cinv,0,1,u

2σ0

}∆vh}
2
L2pΩiq

`
α

2ε
}rvhs}

2
L2pF q, (4.39)

ˇ

ˇ

ˇ

ˇ

ż

F

t∆vhurn ¨∇vhsdΓ

ˇ

ˇ

ˇ

ˇ

ď ε
Cinv,0,u

2σ1

}∆vh}
2
L2pΩiq

`
β

2ε
}rn ¨∇vhs}2L2pF q, (4.40)

hold for all vh P Vh, with α :“ σ0
h3i
, and β :“ σ1

hi
and where Cinv,0,1,u and Cinv,0,u are

independent of the mesh size hi, but dependent on the NURBS degree p.

Proof. For (4.39), applying the Cauchy-Schwarz inequality and subsequently, Young’s

inequality,
ˇ

ˇ

ˇ

ˇ

ż

F

tn ¨∇∆vhurvhsdΓ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

F

1
?
α
tn ¨∇∆vhu

?
αrvhsdΓ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

F

1

α
|tn ¨∇∆vhu|

2dΓ

˙
1
2
ˆ
ż

F

α|rvhs|
2dΓ

˙
1
2

ď
ε

2

ˆ
ż

F

1

α
|tn ¨∇∆vhu|

2dΓ

˙

`
1

2ε

ˆ
ż

F

α|rvhs|
2dΓ

˙

“
ε

2
}

1
?
α
tn ¨∇∆vhu}

2
L2pF q `

α

2ε
}rvhs}

2
L2pF q. (4.41)

Using (4.38), the first part of the right-hand-side of (4.41) is estimated as follows

ε

2
}

1
?
α
tn ¨∇∆vhu}

2
L2pF q “

ε

2α
}
1

2
pn ¨∇∆vh,i ` n ¨∇∆vh,jq }

2
L2pF q
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ď
ε

4α

´

}∇∆vh,i}
2
L2pF q ` }∇∆vh,j}

2
L2pF q

¯

“ 2
ε

4α
}∇∆vh,i}

2
L2pBΩizpBΩi

Ş

BΩqq

ď
ε

2α
}∇∆vh,i}

2
L2pBΩiq

ď ε
Cinv,0,1,u

2αh3
i

}∆vh,i}
2
L2pΩiq

“ ε
Cinv,0,1,u

2σ0

}∆vh}
2
L2pΩiq

.

(4.42)

Substituting (4.42) into (4.41) gives (4.39).

For (4.40), following arguments similar to those used for (4.39),
ˇ

ˇ

ˇ

ˇ

ż

F

t∆vhurn ¨∇vhsdΓ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

F

1
?
β
t∆vhu

a

βrn ¨∇vhsdΓ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

F

1

β
|t∆vhu|

2dΓ

˙
1
2
ˆ
ż

F

β|rn ¨∇vhs|2dΓ

˙
1
2

ď
ε

2

ż

F

1

β
|t∆vhu|

2dΓ`
1

2ε

ż

F

β|rn ¨∇vhs|2dΓ

“
ε

2
}

1
?
β
t∆vhu}

2
L2pF q `

β

2ε
}rn ¨∇vhs}2L2pF q . (4.43)

Using Lemma 4.5.3, the first part of the right-hand-side of (4.43) is estimated as

follows

ε

2
}

1
?
β
t∆vhu}

2
L2pF q “

ε

2β
}
1

2
p∆vh,i `∆vh,jq }

2
L2pF q

ď
ε

4β

´

}∆vh,i}
2
L2pF q ` }∆vh,j}

2
L2pF q

¯

“ 2
ε

4β
}∆vh,i}

2
L2pBΩizpBΩi

Ş

BΩqq

ď
ε

2β
}∆vh,i}

2
L2pBΩiq

ď ε
Cinv,0,u
2βhi

}∆vh,i}
2
L2pΩiq

“ ε
Cinv,0,u

2σ1

}∆vh}
2
L2pΩiq

. (4.44)

Substituting (4.44) into (4.43) gives (4.40).
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Theorem 4.5.6 (Coercivity). Let ahp¨, ¨q be the bilinear form defined in (4.29), and

let Cinv,0,1,u, Cinv,0,u ą 0 be the constants from lemma 4.5.5. Choosing σ0 and σ1 such

that σ0 ě σ0 and σ1 ě σ1 and
Cinv,0,1,u

σ0
`

Cinv,0,u
σ1

ă 1 for σ0, σ1 ě 0. Then there exist

a constant µc ą 0 such that

ahpvh, vhq ě µc}vh}
2
h, @vh P Vh. (4.45)

Proof. For arbitrary vh P Vh,

ahpvh, vhq “
N
ÿ

i“1

ż

Ωi

p∆vhq
2dΩ´ 2

ÿ

FPF

ż

F

rn ¨∇vhst∆vhudΓ

` 2
ÿ

FPF

ż

F

tn ¨∇∆vhurvhsdΓ`
ÿ

FPF

ż

F

σ0

h3
i

rvhs
2dΓ

`
ÿ

FPF

ż

F

σ1

hi
rn ¨∇vhs2dΓ

“

N
ÿ

i“1

}∆vh}
2
L2pΩiq

`
ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q `

ÿ

FPF

ż

F

σ1

hi
}rn ¨∇vhs}2L2pF q

´ 2
ÿ

FPF

ż

F

rn ¨∇vhst∆vhudΓ` 2
ÿ

FPF

ż

F

tn ¨∇∆vhurvhsdΓ. (4.46)

By using (4.39) and (4.40) of Lemma 4.5.5,

ÿ

FPF

ż

F

tn ¨∇∆vhurvhsdΓ ď
ÿ

FPF

ˆ

ε
Cinv,0,1,u

2σ0

}∆vh}
2
L2pΩiq

`
α

2ε
}rvhs}

2
L2pF q

˙

,

(4.47)

and,

ÿ

FPF

ż

F

rn ¨∇vhst∆vhudΓ ď
ÿ

FPF

ˆ

ε
Cinv,0,u

2σ1

}∆vh}
2
L2pΩiq

`
β

2ε
}rn ¨∇vhs}2L2pF q

˙

.

(4.48)

Then, using (4.47) and (4.48),

ahpvh, vhq ě
N
ÿ

i“1

}∆vh}
2
L2pΩiq

`
ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q `

ÿ

FPF

ż

F

σ1

hi
}rn ¨∇vhs}2L2pF q
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´ ε
Cinv,0,u
σ1

N
ÿ

i“1

}∆vh}
2
L2pΩiq

´
1

ε

ÿ

FPF

σ1

hi
}rn ¨∇vhs}2L2pF q

´ 2
ÿ

FPF

ˆ

ε
Cinv,0,1,u

2σ0

}∆vh}
2
L2pΩiq

`
α

2ε
}rvhs}

2
L2pF q

˙

“

N
ÿ

i“1

}∆vh}
2
L2pΩiq

`
ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q `

ÿ

FPF

ż

F

σ1

hi
}rn ¨∇vhs}2L2pF q

´ ε
Cinv,0,u
σ1

N
ÿ

i“1

}∆vh}
2
L2pΩiq

´
1

ε

ÿ

FPF

σ1

hi
}rn ¨∇vhs}2L2pF q

´ ε
Cinv,0,1,u
σ0

N
ÿ

i“1

}∆vh}
2
L2pΩiq

´
1

ε

ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q

“

ˆ

1´ ε
Cinv,0,u
σ1

´ ε
Cinv,0,1,u
σ0

˙ N
ÿ

i“1

}∆vh}
2
L2pΩiq

`

ˆ

1´
1

ε

˙

ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q

`

ˆ

1´
1

ε

˙

ÿ

FPF

σ1

hi
}rn ¨∇vhs}2L2pF q

“

ˆ

1´ ε

ˆ

Cinv,0,1,u
σ0

`
Cinv,0,u
σ1

˙˙ N
ÿ

i“1

}∆vh}
2
L2pΩiq

`

ˆ

1´
1

ε

˙

ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q

`

ˆ

1´
1

ε

˙

ÿ

FPF

σ1

hi
}rn ¨∇vhs}2L2pF q. (4.49)

The coefficients in (4.49) are required to be positive, that is

1´
1

ε
ą 0, and 1´ ε

ˆ

Cinv,0,1,u
σ0

`
Cinv,0,u
σ1

˙

ą 0.

This implies that

1 ą
1

ε
, and 1 ą ε

ˆ

Cinv,0,1,u
σ0

`
Cinv,0,u
σ1

˙

.
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It follows that
ˆ

Cinv,0,1,u
σ0

`
Cinv,0,u
σ1

˙

ă
1

ε
ă 1.

Let ε and µc be chosen such that simultaneously,

0 ă µc ă 1´
1

ε
, and 0 ă µc ă 1´ ε

ˆ

Cinv,0,1,u
σ0

`
Cinv,0,u
σ1

˙

.

It then follows that

ahpvh, vhq ě µc}vh}
2
h.

To prove for boundedness of the bilinear form ahp¨, ¨q : V ˚h ˆ Vh ÝÑ R, where V ˚h :“

H4pΩ, Thq ` Vh. The following norm is defined on V ˚h

}v}V ˚h “

«

}v}2h `
ÿ

FPF

h3
i

σ0

}tn ¨∇∆vu}2L2pF q `
ÿ

FPF

hi
σ1

}t∆vu}2L2pF q

ff
1
2

. (4.50)

Lemma 4.5.7. Let ahp¨, ¨q : V ˚h ˆVh be the bilinear form defined in (4.29), then there

exists a positive constant µb, such that

|ahpu, vhq| ď µb}u}V ˚h }vh}h, @u P V ˚h , vh P Vh. (4.51)

Proof. Using the triangle inequality,

|ahpu, vhq| “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

ż

Ωi

∆u∆vh dΩ

´
ÿ

FPF

ż

F

t∆uurn ¨∇vhs dΓ´
ÿ

FPF

ż

F

rn ¨∇ust∆vhu dΓ

`
ÿ

FPF

ż

F

tn ¨∇∆uurvhs dΓ`
ÿ

FPF

ż

F

rustn ¨∇∆vhu dΓ

`
ÿ

FPF

σ0

h3
i

ż

F

rusrvs dΓ`
ÿ

FPF

σ1

hi

ż

F

rn ¨∇usrn ¨∇vhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ
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ď

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

ż

Ωi

∆u∆vh dΩ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

rn ¨∇ust∆vhu dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

t∆uurn ¨∇vhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

tn ¨∇∆uurvhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

rustn ¨∇∆vhu dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

σ0

h3
i

ż

F

rusrvhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

σ1

hi

ż

F

rn ¨∇usrn ¨∇vhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

.

For the first term, using the Cauchy-Schwarz inequality gives

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

ż

Ωi

∆u∆vh dΩ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

N
ÿ

i“1

ż

Ωi

|∆u|2 dΩ

¸
1
2
˜

N
ÿ

i“1

ż

Ωi

|∆vh|
2 dΩ

¸
1
2

“

˜

N
ÿ

i“1

}∆u}2L2pΩiq

¸
1
2
˜

N
ÿ

i“1

}∆vh}
2
L2pΩiq

¸
1
2

ď }u}V ˚h }vh}h .

For the second term, using the Cauchy-Schwarz inequality and the inverse inequali-

ties,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

?
σ1

?
hi
rn ¨∇us

?
hi

?
σ1

t∆vhu dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

FPF

ż

F

σ1

hi
|rn ¨∇us|2 dΓ

¸
1
2
˜

ÿ

FPF

ż

F

hi
σ1

|t∆vhu|
2 dΓ

¸
1
2

ď }u}V ˚h

˜

hi
σ1

ÿ

FPF

1

4
}∆vh,i `∆vh,j}

2
L2pF q

¸
1
2

ď }u}V ˚h

˜

hi
2σ1

ÿ

FPF

´

}∆vh,i}
2
L2pF q ` }∆vh,j}

2
L2pF q

¯

¸
1
2
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“ }u}V ˚h

˜

hi
2σ1

N
ÿ

i“1

}∆vh,i}
2
L2pBΩizpBΩi

Ş

BΩqq

¸
1
2

ď }u}V ˚h

˜

hi
2σ1

N
ÿ

i“1

}∆vh,i}
2
L2pBΩiq

¸
1
2

ď }u}V ˚h

˜

hi
2σ1

C2
inv,0,u

N
ÿ

i“1

h´1
i }∆vh,i}

2
L2pΩiq

¸
1
2

ď }u}V ˚h
Cinv,0,u
?
σ1

˜

N
ÿ

i“1

}∆vh,i}
2
L2pΩiq

¸
1
2

ď
Cinv,0,u
?
σ1

}u}V ˚h }vh}h,

where Cinv,0,u is the shape constant from the inverse inequalities.

For the third term, using the Cauchy-Schwarz inequality,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

?
hi

?
σ1

t∆uu

?
σ1

?
hi
rn ¨∇vhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

FPF

ż

F

hi
σ1

|t∆uu|2 dΓ

¸
1
2
˜

ÿ

FPF

ż

F

σ1

hi
|rn ¨∇vhs|2 dΓ

¸
1
2

“

˜

ÿ

FPF

hi
σ1

}t∆uu}2L2pF q

¸
1
2
˜

ÿ

FPF

σ1

hi
}rn ¨∇vhs}2L2pF q

¸
1
2

ď }u}V ˚h }vh}h .

For the fourth term, using the Cauchy-Schwarz inequality,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

h
3{2
i
?
σ0

tn ¨∇∆uu

?
σ0

h
3{2
i

rn ¨∇vhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

FPF

ż

F

h3
i

σ0

|tn ¨∇∆uu|2 dΓ

¸
1
2
˜

ÿ

FPF

ż

F

σ0

h3
i

|rn ¨∇vhs|2 dΓ

¸
1
2
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“

˜

ÿ

FPF

h3
i

σ0

}tn ¨∇∆uu}2L2pF q

¸
1
2
˜

ÿ

FPF

σ0

h3
i

|rn ¨∇vhs}2L2pF q

¸
1
2

ď }u}V ˚h }vh}h .

For the fifth term, using the Cauchy-Schwarz inequality, and following steps similar

to those used for obtaining the bounds for the second term gives

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

ż

F

?
σ0

h
3{2
i

rn ¨∇us h
3{2
i
?
σ0

tn ¨∇∆vhu dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

FPF

ż

F

σ0

h3
i

|rn ¨∇us|2 dΓ

¸
1
2
˜

ÿ

FPF

ż

F

h3
i

σ0

|tn ¨∇∆vhu|
2 dΓ

¸
1
2

ď }u}V ˚h

˜

ÿ

FPF

h3
i

σ0

1

4
}n ¨∇∆vh,i ` n ¨∇∆vh,j}

2
L2pF q

¸
1
2

ď }u}V ˚h

˜

h3
i

σ0

ÿ

FPF

1

2

`

}n ¨∇∆vh,i}
2
L2pF q ` }n ¨∇∆vh,j}

2
L2pF q

˘

¸
1
2

“ }u}V ˚h

˜

h3
i

2σ0

N
ÿ

i“1

}∇∆vh,i}
2
L2pBΩizpBΩi

Ş

BΩqq

¸
1
2

ď }u}V ˚h

˜

h3
i

2σ0

N
ÿ

i“1

}∇∆vh,i}
2
L2pBΩiq

¸
1
2

ď }u}V ˚h

˜

h3
i

2σ0

C2
inv,0,1,u

N
ÿ

i“1

h´3
i }∆vh,i}

2
L2pΩiq

¸
1
2

ď }u}V ˚h
Cinv,0,1,u
?
σ0

˜

N
ÿ

i“1

}∆vh,i}
2
L2pΩiq

¸
1
2

ď
Cinv,0,1,u
?
σ0

}u}V ˚h }vh}h .
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For the sixth and seventh terms, using the Cauchy-Schwarz inequality,
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

σ0

h3
i

ż

F

rusrvs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

FPF

ż

F

σ0

h3
i

|rus|2 dΓ

¸
1
2
˜

ÿ

FPF

ż

F

σ0

h3
i

|rvhs|
2 dΓ

¸
1
2

“

˜

ÿ

FPF

σ0

h3
i

}rus}2L2pF q

¸
1
2
˜

ÿ

FPF

σ0

h3
i

}rvhs}
2
L2pF q

¸
1
2

ď }u}V ˚h }vh}h,

and
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

FPF

σ1

hi

ż

F

rn ¨∇usrn ¨∇vhs dΓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

FPF

ż

F

σ1

hi
|rn ¨∇us|2 dΓ

¸
1
2
˜

ÿ

FPF

ż

F

σ1

hi
|rn ¨∇vhs|2 dΓ

¸
1
2

“

˜

ÿ

FPF

σ1

hi
}rn ¨∇us}2L2pF q

¸
1
2
˜

ÿ

FPF

σ1

hi
}rn ¨∇vhs}2L2pF q

¸
1
2

ď }u}V ˚h }vh}h .

Then, summing all the bounds give

|ahpu, vhq| ď }u}V ˚h }vh}h `
Cinv,0,u
?
σ1

}u}V ˚h }vh}h ` }u}V
˚
h
}vh}h

` }u}V ˚h }vh}h `
Cinv,0,1,u
?
σ0

}u}V ˚h }vh}h ` }u}V
˚
h
}vh}h ` }u}V ˚h }vh}h

“ p5`
Cinv,0,u
?
σ1

`
Cinv,0,1,u
?
σ0

q}u}V ˚h }vh}h .

Thus |ahpu, vhq| ď µb}u}V ˚h }vh}h, with µb “ 5`
Cinv,0,u
?
σ1

`
Cinv,0,1,u
?
σ0

.

4.6 Approximation and Error Estimates

In this section, the discretization error estimates of the symmetric interior penalty

scheme are presented and an a-priori error estimate is derived. Some auxiliary results
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are required to analyze the dG-IgA scheme.

4.6.1 Auxiliary Results

Theorem 4.6.1. Let l and s be non-zero integers with 0 ď l ď s ď p ` 1 and

pK P pKh such that K “ Φp pKq. Then there exists an interpolant Πhv P Vh for all

v P L2pΩq
Ş

HspK̄q and a constant Cs ą 0 such that the following inequality holds

|v ´ Πhv|HlpKq ď Csh
s´l
K

s
ÿ

t“0

}∇Φ}t´s
L8p

Ď

xKq
}v}HtpK̄q, (4.52)

where hK is the element size in the physical domain defined as hK “ }∇Φ}L8p pKq
ph

pK.

Proof. See [Theorem 3.1 in Bazilevs et al. (2006)].

Proposition 4.6.2. Given the integers l and s such that 0 ď l ď s ď p ` 1, there

exist a positive constant Cs such that for a function v P HspΩiq

ÿ

KPKh,i

|v ´ Πh,iv|
2
HlpKq ď Csh

2ps´lq
}v}2HspΩiq

, (4.53)

where hi is the mesh size in the physical domain, and p denotes the underlying B-

spline or NURBS degree.

Proof. See [Proposition 3.1 in Tagliabue et al. (2014)].

Proposition 4.6.3. Given the integers l and s such that 0 ď l ď s ď p ` 1, there

exist a positive constant Cs such that for a function v P HspΩiq and l ď kmin; kmin

being the global smoothness parameter for the NURBS basis

|v ´ Πh,iv|HlpΩiq ď Csh
ps´lq
i }v}HspΩiq, (4.54)

where hi denotes the maximum mesh-size parameter in the physical domain, Ωi.

Proof. See [Proposition 3.2 in Tagliabue et al. (2014)].
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Lemma 4.6.4. Let s and p be positive integers such that s ě 4 and p ě 3. Then

there exists an interpolant, Πh,i : HspΩ, Thq ÝÑ Vh, Πh,iv P Vh for all v P HspΩ, Thq

with C0, C1, C2, C3, C4 ą 0 such that for F P F the following estimates hold

}∇q
pv ´ Πh,ivq}

2
L2pBΩiq

ď C0h
2pri´qq´1
i }v}2Hri pΩiq

, (4.55)

ÿ

FPF

σ0

h3
i

}rv ´ Πh,ivs}
2
L2pF q ď C1

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.56)

ÿ

FPF

σ1

hi
}rn ¨∇pv ´ Πh,ivqs}

2
L2pF q ď C2

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.57)

ÿ

FPF

hi
σ1

}t∆pv ´ Πh,ivqu}
2
L2pF q ď C3

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.58)

ÿ

FPF

h3
i

σ0

}tn ¨∇∆pv ´ Πh,ivqu}
2
L2pF q ď C4

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.59)

where q ě 0, ri “ mints, p ` 1u and C0, C1, C2, C3 and C4 are independent of the

mesh size but factors of the penalty parameters σ0 and σ1.

Proof. For (4.55), using Lemma 4.5.2, and the approximation estimate in Proposi-

tion 4.6.3,

}∇q
pv ´ Πh,ivq}

2
L2pBΩiq

ď C2
tr,uh

´1
i

´

}∇q
pv ´ Πh,ivq}

2
L2pΩiq

` h2
i |∇q

pv ´ Πh,ivq|
2
H1pΩiq

¯

“ C2
tr,uh

´1
i

´

|v ´ Πh,iv|
2
HqpΩiq

` h2
i |v ´ Πh,iv|

2
Hq`1pΩiq

¯

ď C2
sC

2
tr,uh

´1
i

´

h
2pri´qq
i }v}2Hri pΩiq

` h2
ih

2pri´q´1q
i }v}2Hri pΩiq

¯

“ C2
sC

2
tr,uh

´1
i

´

h
2pri´qq
i ` h

2pri´qq
i

¯

}v}2Hri pΩiq

ď C0h
´1
i h

2pri´qq
i }v}2Hri pΩiq

“ C0h
2pri´qq´1
i }v}2Hri pΩiq

,

with C0 “ 2C2
sC

2
tr,u.

For (4.56), setting q “ 0 in (4.55),
ÿ

FPF

σ0

h3
i

}rv ´ Πh,ivs}
2
L2pF q “

ÿ

FPF

σ0

h3
i

}pv ´ Πh,ivq ´ pv ´ Πh,jvq}
2
L2pF q
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ď
ÿ

FPF
2
σ0

h3
i

ˆ

}v ´ Πh,iv}
2
L2pF q ` }v ´ Πh,jv}

2
L2pF q

˙

“

N
ÿ

i“1

2
σ0

h3
i

}v ´ Πh,iv}
2
L2pBΩizpBΩi

Ş

BΩqq

ď

N
ÿ

i“1

2
σ0

h3
i

}v ´ Πh,iv}
2
L2pBΩiq

ď

N
ÿ

i“1

2
σ0

h3
i

C0h
2ri´1
i }v}2Hri pΩiq

“ C1

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

,

(4.60)

with C1 “ 2σ0C0.

For (4.57), setting q “ 1 in (4.55),

ÿ

FPF

σ1

hi
}rn ¨∇pv ´ Πh,ivqs}

2
L2pF q

“
ÿ

FPF

σ1

hi
}n ¨∇pv ´ Πh,ivq ´ n ¨∇pv ´ Πh,jvq}

2
L2pF q

ď
ÿ

FPF
2
σ1

hi

ˆ

}∇pv ´ Πh,ivq}
2
L2pF q ` }∇pv ´ Πh,jvq}

2
L2pF q

˙

“

N
ÿ

i“1

2
σ1

hi
}∇pv ´ Πh,ivq}

2
L2pBΩizpBΩi

Ş

BΩqq

ď

N
ÿ

i“1

2
σ1

hi
}∇pv ´ Πh,ivq}

2
L2pBΩiq

ď

N
ÿ

i“1

2
σ1

hi
C0h

2pri´1q´1
i }v}2Hri pΩiq

“ C2

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.61)

with C2 “ 2σ1C0.

For (4.58), setting q “ 2 in (4.55),

ÿ

FPF

hi
σ1

}t∆pv ´ Πh,ivqu}
2
L2pF q
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“
ÿ

FPF

hi
4σ1

}∆pv ´ Πh,ivq `∆pv ´ Πh,jvq}
2
L2pF q

ď
ÿ

FPF
2
hi

4σ1

ˆ

}∆pv ´ Πh,ivq}
2
L2pF q ` }∆pv ´ Πh,jvq}

2
L2pF q

˙

“

N
ÿ

i“1

hi
2σ1

}∆pv ´ Πh,ivq}
2
L2pBΩizpBΩi

Ş

BΩqq

ď

N
ÿ

i“1

hi
2σ1

}∆pv ´ Πh,ivq}
2
L2pBΩiq

ď

N
ÿ

i“1

hi
2σ1

C0h
2pri´2q´1
i }v}2Hri pΩiq

“ C3

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

,

with C3 “
C0

2σ1
.

For (4.59), setting q “ 3 in 4.55,

ÿ

FPF

h3
i

σ0

}tn ¨∇∆pv ´ Πh,ivqu}
2
L2pF q

“
ÿ

FPF

h3
i

4σ0

}n ¨∇∆pv ´ Πh,ivq ` n ¨∇∆pv ´ Πh,jvq}
2
L2pF q

ď
ÿ

FPF
2
h3
i

4σ0

ˆ

}∇∆pv ´ Πh,ivq}
2
L2pF q ` }∇∆pv ´ Πh,jvq}

2
L2pF q

˙

“

N
ÿ

i“1

h3
i

2σ0

}∇∆pv ´ Πh,ivq}
2
L2pBΩizpBΩi

Ş

BΩqq

ď

N
ÿ

i“1

h3
i

2σ0

}∇∆pv ´ Πh,ivq}
2
L2pBΩiq

ď

N
ÿ

i“1

h3
i

2σ0

C0h
2pri´3q´1
i }v}2Hri pΩiq

“ C4

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

. (4.62)

with C4 “
C0

2σ0
.
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4.6.2 Error Estimates

To derive a priori error estimates, the following estimates are required.

Lemma 4.6.5. Let v P HspΩ, Thq for s ě 4 be the solution of 4.29 and Πh,iv P Vh be

the continuous interpolant of v. Then, for p ě 3, the following hold

}v ´ Πh,iv}
2
h ď C5

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.63)

}v ´ Πh,iv}
2
V ˚h
ď C6

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

, (4.64)

where ri :“ mints, p` 1u, C5 and C6 are independent of mesh sizes hi.

Proof. By using the definition of the norm 4.32 and Lemma 4.6.4,

}v ´ Πh,iv}
2
h

“

N
ÿ

i“1

}∆pv ´ Πh,ivq}
2
L2pΩiq

`
ÿ

FPF

σ0

h3
i

}rv ´ Πh,ivs}
2
L2pF q

`
ÿ

FPF

σ1

hi
}rn ¨∇pv ´ Πh,ivqs}

2
L2pF q

ď Cs

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

` C1

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

` C2

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

“ C5

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

,

where C5 “ pCs ` C1 ` C2q.

Next, by using the definition of the norm 4.50 together with Lemma 4.6.4,

}v ´ Πh,iv}
2
V ˚h
“ }v ´ Πh,iv}

2
h `

ÿ

FPF

h3
i

σ0

}tn ¨∇∆pv ´ Πh,ivqu}
2
L2pF q

`
ÿ

FPF

hi
σ1

}t∆pv ´ Πh,ivqu}
2
L2pF q
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ď C5

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

` C3

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

` C4

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

“ C6

N
ÿ

i“1

h
2pri´2q
i }v}2Hri pΩiq

,

where C6 “ pC5 ` C3 ` C4q.

Finally, the a-priori discretization error estimate in the discrete norm } ¨ }h is stated

in the following theorem.

Theorem 4.6.6. Let u P HspΩ, Thq with s ě 4, be the solution of 4.26, and let

uh P Vh be the solution of 4.29. Then there exists C ą 0, independent of hi and N

such that the following bound holds

}u´ uh}h ď C
N
ÿ

i“1

hri´2
i }u}Hri pΩiq, (4.65)

where ri “ mints, p` 1u and C is independent of the mesh sizes hi but dependent on

the NURBS degree p.

Proof. By using the triangle inequality,

}u´ uh}h ď }u´ Πh,iu}h ` }Πh,iu´ uh}h . (4.66)

By using the coercivity result, Galerkin orthogonality and the boundedness result,

µc}Πh,iu´ uh}
2
h ď ahpΠh,iu´ uh,Πh,iu´ uhq “ ahpΠh,iu´ u,Πh,iu´ uhq

ď µb}Πh,iu´ u}V ˚h }Πh,iu´ uh}h.

Subsequently

}Πh,iu´ uh}h ď
µb
µc
}Πh,iu´ u}V ˚h .
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Then

}u´ uh}h ď }u´ Πh,iu}h `
µb
µc
}Πh,iu´ u}V ˚h ,

ď C
1{2
5

N
ÿ

i“1

hri´2
i }u}Hri pΩiq `

µb
µc
C

1{2
6

N
ÿ

i“1

hri´2
i }u}Hri pΩiq

“ C7

N
ÿ

i“1

hri´2
i }u}Hri pΩiq, (4.67)

with C7 “ C
1{2
5 `

µb
µc
C

1{2
6 .

Remark 4.6.1. In the analysis performed in this chapter, it was assumed that s

was the same for each HspΩiq. In a more general case, the vector s “ ps1, . . . , sNq

is defined such that HspΩ, Thq :“ tv P L2pΩq : v|Ωi P H
sipΩiq, @i “ 1, . . . , Nu.

Also, for very complex geometry, the NURBS degree may vary significantly between

patches, that is, it may be the case that p “ pp1, . . . , pNq, with pi not necessarily

greater than 3.

72



Chapter 5

Conclusion and Recommendations

5.1 Introduction

In this chapter, conclusions and recommendations for further studies are presented.

5.2 Conclusion

In this thesis, the standard Galerkin IgA approximation for the general biharmonic

problem was derived, and the existence and uniqueness of the solution to the model

problem was shown. The corresponding a-priori error estimates were also presented.

An interior penalty variational formulation of the Dirichlet version of the biharmonic

problem was derived, and using the SIPG method, a dG-IgA scheme for the bihar-

monic problem was obtained. The variational formulation was shown to be consistent

with the strong form of the problem.

Discrete coercivity and boundedness proofs for the bilinear form of the dG-IgA ap-

proximation, which guarantee the existence, uniqueness and stability of the solution
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to the model problem were presented.

Some approximation estimates were obtained, and a-priori error estimates were pre-

sented for the dG-IgA scheme obtained. From the a-priori error estimates, numerical

results are expected to converge optimally in the dG-norm, as is consistent with ob-

served literature.

5.3 Recommendations

The following are recommended:

1. In the derivation of the dG-IgA schemes and for the numerical analysis car-

ried out, the SIPG method, which is part of the class of primal discontinuous

Galerkin methods was considered. There are three other methods in this class

that can also be considered.

2. The a-priori error estimates presented in this thesis correspond to convergence

analysis under h-refinement. Convergence can also be studied with respect to

p-refinement and k-refinement.
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