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Abstract

Tight oil is petroleum that accumulates in relatively impermeable reservoir rocks,

often shale or tight sandstones. Globally, tight oil resources provide significant

amount of petroleum for the world’s energy needs. The flow behavior of tight oil

in unconventional reservoirs are described by peculiar complexities that presents a

challenging task in finding immediate solutions for reservoir engineers. It is there-

fore critical to implement approaches that solve such problems without loosing

vital information of the flow phenomenon. This study demonstrates a general

concept to explain the behavior of tight oil in unconventional reservoirs. In this

study, an investigation into the application of similarity transformations for the

analysis of complex unconventional reservoirs exhibiting two phase phenomena

during transient radial flow is done. The similarity transformation is carried

out with the Boltzmann variable. The techniques adopted in the transformation

process aids in converting highly nonlinear partial-differential equations (PDEs)

governing the two phase flow phenomenon, to nonlinear ordinary differential equa-

tions (ODEs). The resulting ODEs, consequently simplify the determination of

the reservoir performance and avoid the tedious calculation ingrained in solving

the original PDEs. From a theoretical point of view, the successful conversion

of the highly nonlinear PDEs to ODEs permits the derivation of saturation and

pressure equations as unique functions of the Boltzmann variable, which in turn,

guarantees the expression of saturation as a unique function of pressure. Further

research is carried out to investigate the constant gas-oil ratio (GOR) that is typ-

ically observed in some hydraulically fractured tight oil reservoirs during constant

pressure two-phase production. The similarity transformation approach sets up a

foundation to develop an analytical solution to the model adopted in this study.

The analytical solution yielding from this work is used to obtain similar forms

to well-known equations (flow rate and cumulative production) for single phase

flow, which enhance our understanding of multiphase flow behavior.
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Chapter 11

Introduction2

1.1 Background of Study3

The decline in conventional hydrocarbon resources coupled with the increase in4

energy demand has encouraged the development of unconventional resources. The5

production of oil from conventional resources has peaked and is currently on a6

terminal, long-run global decline. The plateau in conventional oil resources and7

the corresponding increase in demand for fossil fuels have triggered world mar-8

kets to respond with higher oil prices. The petroleum industry is approaching9

the end of easily accessible, relatively homogeneous oils, and several researchers10

claim that, the era of cheap oil may also be ending (Gordon, 2012).11

12

Tight oils of unconventional resources provide significant amount of petroleum13

for the world’s energy needs. Production of tight oil comes from very low perme-14

ability rocks that must be stimulated using hydraulic fracturing mechanisms to15

create sufficient permeability for matured oil and/or natural gas liquids to flow16

at economic rates. The low permeability of tight oil reservoirs require production17

with large pressure drawdowns. This pressure drawdown is large enough that,18

the flowing pressure drops below the bubble point pressure of the in-situ liquid19

hence, causing the evolution of dissolved gases.20

21

Mathematical models have been used widely to analyze the conventional reser-22

voirs that are in existence today. However, the development of such models for23

unconventional reservoirs present peculiar complexities. The analysis and un-24

derstanding of the factors that affect the performance of these unconventional25

1



reservoirs are critical for their efficient exploitation. The non-linearities associ-26

ated with the two-phase flow, typical of tight oil reservoirs, present a challenging27

task in finding solutions to such models (Tabatabaie and Pooladi-Darvish, 2016).28

29

The implementation of similarity variable theory in the context of the analysis30

of flow behavior in tight oil reservoirs provides one of several approaches to find-31

ing solutions to reservoir flow problems. This study develops and analyzes the32

applicability of similarity solutions to two phase flow in tight oil reservoirs.33

1.2 Problem Statement34

Reservoir flow simulation provides a reasonable approach to describe reservoir35

behavior, however, the equations mimic highly non-linear and complex phenom-36

ena which make their simulations tedious and computationally expensive. These37

complexities associated with the PDEs describing the two phase flow prevalent38

in tight oil unconventional reservoirs present a challenging task in finding imme-39

diate solutions for reservoir engineers. The dilemma in this setback necessitates40

approaches to solving such problems without loosing vital information of the flow41

phenomenon; a practice worthwhile to consider.42

1.3 Objectives of the study43

To resolve this problem, the following objectives are considered:44

1. to obtain the similarity transforms of the governing equations describing45

the reservoir behavior.46

2. to determine the fundamental physics (pressure and saturation distribution)47

by similarity and numerical approaches.48

3. to determine the behavior of the gas-oil ratio in tight oil reservoirs.49

4. to derive an analytical solution under a prescribed assumption.50

2



1.4 Outline of Methodology51

The method adopted in this study, explores the applicability of similarity trans-52

formation to transient two phase flow. The transformation is implemented with53

the Boltzmann variable to facilitate the conversion of the highly nonlinear partial-54

differential equations (PDEs) governing flow through porous media to nonlinear55

ordinary-differential equations (ODEs). The numerical simulation of the reser-56

voir behavior is carried out by a finite difference method based on an Implicit-57

Pressure-Explicit-Saturation scheme defined on sets of hypothetical data. An58

analytic case is also be developed under limiting assumptions to derive solutions59

which are compared with proposed solutions in literature. A further investigation60

is carried out to study the behavior of the gas-oil ratio under a constant pressure61

production scenario at the sandface.62

1.5 Justification of the Study63

The process of building and maintaining robust, reliable model of oil fields is often64

time-consuming and expensive to execute. Hence, there is the need to adopt fast65

and efficient means to carry out simulation studies. These simulation studies are66

performed to offer preliminary and appraisal information about the behavior of a67

reservoir. This information is used by oil and gas companies in the development68

of new fields. Also, reservoir simulations are carried out in developed fields where69

production forecasts are needed to help make investment decisions. The use of70

similarity approximations makes the acquisition of information much handy under71

huge time constraints. Lowering the time for executing and analyzing a model is72

of utmost importance in the petroleum industry.73

3



1.6 Scope of Work74

This study expounds the basic theories and principles necessary to describe fluid75

flow in porous media and the techniques adopted in solving flow problems en-76

countered in unconventional hydrocarbon resources. An investigation is carried77

out through the development of a reservoir model for tight oil in unconventional78

reservoirs which is analysed by implementing a similarity transformation as well79

as a numerical simulation. The results which includes profiles and plots are used80

to explain the practicality of the methods adopted in this study. A compari-81

son of the semi-analytic solution and full numerical solution spanning from this82

study offers a platform to justify the application of similarity transformation to83

multiphase flow in tight oil reservoirs.84

1.7 Limitations85

The limitations to this work span from the assumptions made to arrive at the86

conclusions. These assumptions limit the analyses of this work to near ideal87

conditions. However, the insight obtained from this study offer a basis to consider88

the practicality of similarity solutions to describe hydrocarbon reservoir behavior.89

1.8 Thesis organization90

This study is divided into four main parts. In order to obtain an understanding91

of this study, Chapter two explains some of the critical background knowledge92

required in simulation studies of hydrocarbon reservoirs. The model building93

blocks such as the Law of Mass Conservation, Darcy’s law and others are ex-94

pounded. The implementation of similarity variable theory on partial differential95

equations is explored. A brief account is made about the finite difference method96

(Implicit-Pressure-Explicit-Saturation scheme) carried out in this study.97

98

4



The third chapter explains the underlining mathematical model(PDEs) for the99

multiphase radial flow in tight oil reservoirs and the assumptions made to carry100

out the main work. Here, the similarity transformation of the model, that is, from101

PDEs into ODEs are resolved with the use of the Boltzmann variable. These re-102

sulting ODEs are solved numerically to obtain a semi-analytic similarity solution.103

This is quickly followed by a full numerical approach to solve the original PDEs104

by a finite difference method(IMPES). Finally, the study develops an analytical105

solution to the two phase radial flow of hydrocarbons yielding form the similarity106

transformation under a limiting assumption.107

108

Chapter four details the analysis of a hypothetical base case which is imple-109

mented by the semi-analytic similarity and the numerical approaches. The plots110

from the similarity and numerical simulations are compared and explained. The111

comparison of the two solutions provide a means to justify the applicability of112

the similarity approach. This study is finally capped with conclusions and rec-113

ommendation for future works in chapter five.114

5



Chapter 2115

Literature Review116

2.1 Introduction117

The major purpose of this chapter is to present a quick overview of the basics118

of reservoir engineering concepts and laws. The theories are well documented119

in the books of Aziz and Settari (1979), Peaceman (1977) and Zimmermann120

(1993). These books have been of great help in forming the backbone of this121

chapter. Brief descriptions of reservoir rock and fluid characteristics, rock/fluid122

interaction which strongly affect the multiphase flow behavior through porous123

media is reviewed. These petrophysical properties are well explained by Engler124

(2010).125

2.2 Definition of Unconventional Reservoirs126

Literature presents no formal definition of unconventional hydrocarbon resources,127

despite the fact that unconventional resources are the most vast and active128

petroleum systems in some parts of the world, typically Northern America. Some129

researchers define unconventional resources, emphasizing purely on a permeabil-130

ity threshold (< 0.1md). (Cander, 2012)131

132

On the other hand, others prefer a definition based on the interpretation of133

petroleum systems and have concluded that, unconventional resources are pre-134

dominantly continuous or basin centered and lack traditional trap mechanisms.135

Some researchers have also restricted the phrase to the fluid type that accumu-136

lates in the reservoir. There exist many shale and tight sand systems that have137

gas, wet gas, and oil fairways and all are considered unconventional. Notwith-138

6



standing, heavy oil and oil sands are also unconventional resources and several139

of such deposits are in reservoirs with permeability exceeding 500md. (Cander,140

2012)141

142

Thus, these definitions only conclude that, unconventional resources encompasses143

both low and high permeability reservoirs with both low and high viscosity fluids.144

Nevertheless, these facts do not account for all phases of petroleum existing in145

the several types of reservoirs within several types of petroleum systems.(Cander,146

2012)147

148

In this study, a graphical definition that assimilates properties of both the rocks149

and fluid contents, is used to set up a fundamental definition. This is illustrated150

in Figure (2.1). Here, petroleum reservoirs are classified by using a graph of

Figure 2.1: Defining unconventional resources based on fluid viscosity and rock
permeability,(Cander, 2012)

151

viscosity versus permeability (both in log scale). By this means, conventional152

resources are distinguishable on the lower right quadrant of the graph, regardless153

of fluid phase. Unconventional resources, on the other hand, occur outside this154

7



quadrant due to a low ratio of permeability to viscosity.155

Hence, unconventional reservoirs can be defined as hydrocarbon reservoirs whose156

permeability-viscosity ratio requires the use of technology to alter the rock perme-157

ability or the fluid viscosity in order to produce the hydrocarbon at economically158

viable rates. The graphical definition accommodates and delineates tight gas,159

tight oil, shale gas, shale oil, heavy oil, coal bed methane, and even offshore160

reservoirs with low permeability-viscosity ratios. (Cander, 2012)161

162

2.2.1 Tight Oil Reservoirs163

Tight oil is petroleum found in relatively impermeable reservoir rock, often shale164

or tight sandstones. The production of tight oil from these very low permeability165

rocks must be stimulated using hydraulic fracturing to create sufficient perme-166

ability to allow the mature oil and/or natural gas liquids to flow at economically167

viable rates (Schlumberger, 2016).168

169

Globally, tight oil resources provide significant amount of petroleum for the170

world’s energy needs. Table (2.1) shows estimates of technically recoverable vol-171

umes of tight oil associated with shale formations, made by the U.S. Energy172

Information Administration (2013).173

174
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Country Technically recoverable volume(billion barrels)
Russia 75

United States 48 to 58
China 32

Argentina 27
Libya 26

Venezuela 13
Mexico 13

Pakistan 9
Canada 9

Indonesia 8
World Total 335 to 345

Table 2.1: Technically recoverable volume of petroleum from tight oil reservoirs
in billion barrels (U.S. Energy Information Administration, 2013)

2.3 Petro-physical Properties of Porous Media175

Petrophysics is the study of the physical and chemical properties of rocks and176

their contained fluids. The petrophysical properties of a hydrocarbon system are177

broadly classified into rock and fluid properties. Petrophysical properties are very178

important for the petroleum industry because they serve as the vital source of179

information required to fully understand the mechanism of rock-fluid interaction180

as well as determine the economic viability of hydrocarbon-bearing reservoirs.181

In the following, brief descriptions are given regarding some vital rock and fluid182

properties that are necessary to investigate hydrocarbon systems.183

2.3.1 Rock Properties184

Porosity185

Porosity is an important rock property because it is a measure of the potential

storage capacity or volume for hydrocarbons. It is defined as the ratio of pore

9



volume to bulk volume of a rock sample which is expressed as:

φ =
Vp
Vb

=
Pore Volume of rock

Bulk Volume of rock
(2.1)

It is within these pore spaces that the oil, gas and/or water reside. Therefore a186

primary application of porosity is to quantify the storage capacity of the rock,187

and subsequently define the volume of hydrocarbons available to be produced.188

(Engler, 2010)189

Permeability190

Permeability is a measure of the ability of a porous media to transmit fluids. It is

a critical property in characterizing the flow capacity of a rock sample. The unit

of measurement is the darcy, named after the French scientist who discovered the

phenomenon. It is commonly denoted as k. Absolute permeability(k) defines the

ability of the porous media to transmit a particular kind of fluid under single phase

conditions. Effective permeability(ki) defines permeability of a given phase when

more than one phase is present in the porous medium (Engler, 2010). Relative

permeability(kri) is the ratio of the effective permeability for a particular fluid to

a base or absolute permeability of the rock(Engler, 2010). Relative permeability

is expressed as:

kri =
ki
k

(2.2)

where; i refers to the fluid phases (oil, gas or water).191

2.3.2 Fluid Properties192

Saturation193

Saturation is an explicit measure of the fluid content of the porous rock. It

therefore directly influences the hydrocarbon storage capacity of the reservoir.

Saturation is defined as the ratio of a fluid volume to the pore volume of a porous

media (Engler, 2010). For a typical hydrocarbon system the total fluid saturation
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is always 1; that is, So + Sg + Sw = 1.

where, it is considered that; Vp = Vo + Vg + Vw. Hence;

Si =
Vi
Vp

=
Volume of oil

Volume of pore
(2.3)

where; i refers to the fluid phases (oil, gas or water).194

Fluid Compressibility195

Fluid compressibility is defined as the fractional volumetric change of a given

mass per pressure change under isothermal conditions (constant temperature).

Mathematically, the coefficient of isothermal compressibility is defined as:

c = − 1

V

(
∂V

∂p

)
T

(2.4)

where V is volume and p is pressure. The subscript is used to denote that the196

partial differentiation is to be taken assuming constant temperature (isothermal197

conditions). Water, which usually occur in many hydrocarbon systems is consid-198

ered as incompressible (in most cases) or slightly compressible. The compress-199

ibility of oil is dependent on the in-situ pressure existing in the system. In some200

cases, pressures is higher than bubble point pressure allow oils and associated201

solution gases to be treated as slightly compressible.(Kamyabi, 2014)202

Fluid Viscosity203

Fluid viscosity describes the resistance of fluids to shear stress. It is a proportional

factor between the shear stress acting on a fluid and rate of deformation over time

(Kamyabi, 2014). It is generally expressed as:

µ =
τ

ux
(2.5)
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where µ represents the absolute viscosity of fluid. τ and ux are the shear stress204

and rate of deformation respectively.205

Formation Volume Factor206

The formation volume factor is the ratio of the volume of a fluid phase at reservoir

(in-situ) conditions to the volume at stock tank (surface) conditions (Engler,

2010). This factor accounts for the changes in volume of the formation fluids as

it moves from reservoir conditions to surface conditions. This factor is used to

convert the flow rate of fluids (at stock tank conditions) to reservoir conditions

(Engler, 2010). It also enables the calculation of fluid density and it is defined

as:

Bi =
Vir(at reservoir conditions)

Vis(at surface conditions)
(2.6)

Fluid Mobility207

Fluid mobility(λ) of a fluid phase is the ease associated with the displacement of

the fluid by another fluid through a porous medium It is expressed as the ratio

of the relative permeability to the viscosity of a fluid phase (Engler, 2010). This

property is therefore dependent on both the rock and the fluid properties. It is

expressed as:

λi =
kri
µi

(2.7)

where i represents the phase type.208

2.4 Fluid Flow in Porous Media209

A porous medium refers to a rock formation or material that contains void spaces210

occupied by one or more fluid phases (gas, water, oil, etc.) and a solid matrix.211

Transient flow of a fluid through a porous medium is governed by certain types212

of partial differential equations known as diffusivity equations. These equations213

are derived through a combination of the conservation of mass equation, Darcy’s214
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law and an equation that describes the manner in which fluid is stored inside a215

porous rock under a set of assumptions (Engler, 2010).216

2.4.1 Flow equations in radial coordinates217

In order to develop a complete governing equation that applies to transient prob-218

lems, the mathematical expression of the principle of conservation of mass is219

applied. The physics associated with fluid flow towards a well is a vital area220

in petroleum engineering, in which case it is more convenient to use cylindrical221

(radial) coordinates, rather than Cartesian coordinates (Engler, 2010). To derive222

the proper form of the diffusion equation in radial coordinates, fluid flow is con-223

sidered towards (or away from) a vertical well, in a radially-symmetric manner.224

The fluids flow is a radial manner through a curved surface area, A, given by225

A(r) = 2πrH in the porous media.226

227

Considering flow through a one-dimensional cylindrical medium of cross-sectional228

area A; from r to r + ∆r where ∆r is a small change in the radius, r.229

Figure 2.2: Annular flow pattern used to derive the diffusivity equation in radial
coordinates

The main idea behind the application of the principle of conservation of mass is;

Flux in - Flux out = Increase in amount stored (2.8)
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Considering the period of time between time t and t+∆t. Assuming that the fluid

is flowing from left to right through the medium ∆r. During the time increment

(∆t), the mass flux into the region of porous rock at r can be expressed as:

Mass flux in = A(r)ρ(r)q(r)∆t (2.9)

The mass flux out of the porous rock at (r + ∆r) can be expressed as:

Mass flux out = A(r+∆r)ρ(r+∆r)q(r+∆r)∆t (2.10)

Let the amount of fluid mass stored in the region ∆r be denoted by m, so the

conservation of mass equation in time ∆t takes the form

[2πrHρ(r)q(r) − 2π(r + ∆r)Hρ(r+∆r)q(r+∆r)]∆t = m(t+∆t) −m(t) (2.11)

Dividing through Equation (2.11) by ∆t and taking limits as ∆t→ 0 :

2πH[rρ(r)q(r) − (r + ∆r)ρ(r+∆r)q(r+∆r)]∆t = lim
∆t→0

m(t+∆t) −m(t)

∆t
=
∂m

∂t
(2.12)

But m = ρVp , where Vp is the pore volume of the rock contained in the region

(∆r) between r and r + ∆r.

So,

m = ρVp = ρφV = ρφ2πrH∆r

where; φ is the rock porosity and V is the rock bulk volume. Then;

∂(ρφ2πrH∆r)

∂t
=
∂(ρφ)

∂t
2πrH∆r

Therefore Equation (2.12) becomes;

2πH[rρ(r)q(r) − (r + ∆r)ρ(r+∆r)q(r+∆r)] = 2πrH∆r
∂(ρφ)

∂t
(2.13)
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Dividing through Equation (2.13) by 2πH∆r, and taking limits as ∆r → 0 gives:

−∂(rρq)

∂r
= r

∂(ρφ)

∂t
(2.14)

Equation (2.14) is the basic equation of conservation of mass for 1-D radial flow230

in a porous medium. It is applicable to gases, liquids or high and low flow rate231

regimes. (Engler, 2010).232

2.4.2 Darcy’s law233

Darcy’s law presents a fundamental governing equation to describe the flow of flu-

ids through porous media. The law was formulated by the French civil engineer,

Henry Darcy in 1856 on the basis of his experiments on vertical water filtra-

tion through sand beds. Darcy found that his observations could be described

mathematically by:

Q =
CA∆(p− ρgz)

L
. (2.15)

where: p = pressure ρ = density234

g = gravitational acceleration z = vertical length from a reference datum235

L = length of medium Q = volumetric flowrate236

C = constant of proportionality A = cross-sectional area of medium.237

238

Subsequent to Darcy’s initial discovery, several authors including (Aziz and Set-

tari, 1979) have found that, all other factors being equal, Q is inversely propor-

tional to the fluid viscosity, µ. It is therefore convenient to factor out µ, and let

C =
k

µ
, where k is known as the absolute permeability of a single fluid through

a porous medium. This has resulted to a more convenient way to express the

law, with the volumetric flow per unit area given as, q = Q/A. Darcy’s law is

therefore usually written as:

q =
Q

A
=
k

µ

∆(p− ρgz)

L
(2.16)
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where q is the fluid flux.(Aziz and Settari, 1979)239

240

For transient processes in which the flux varies from one point to another, a

differential form of Darcy’s law is more appropriate. Assuming a horizontal flow

of fluids, for example, the Darcy’s law can be expressed as

q =
Q

A
= −k

µ

∂(p− ρgz)

∂x
(2.17)

The minus(-) sign is conventional and accounts for the flow of fluids in opposite

direction to pressure or potential gradient. Similarly, the Darcy’s law for radial

flow is expressed as:

q =
Q

A
= −k

µ

∂(p− ρgz)

∂r
(2.18)

Darcy’s law is the most widely used equation to describe the flow of fluid in241

porous media. However, a search through most fluid dynamics textbook suggests242

that, fluid motion is described by the Navier-Stokes equations. The key point243

to note is that, Darcy’s law for porous media is derived from the Navier-Stokes244

equation under certain assumptions. By utilizing local averaging techniques-245

(Whitaker, 1986), or homogenization-(Hornung, 1997), it can be resolved that246

under appropriate assumptions the momentum conservation of the Navier-Stokes247

equation reduces to the Darcy’s law on the macroscopic level.248

2.5 Similarity Transformation249

There exist several techniques for solving the PDEs associated with transient flow250

problems, such as the Fourier tansformation and Laplace transformation. How-251

ever, the Boltzmann transformation is one which is widely used to analyze flow252

problems in reservoir engineering. This is a technique in which the dependence253

of a PDE on two or more independent variables is reduced to a particular com-254

bination of those variables such that the PDE is converted to an ODE, or to a255
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PDE with a smaller number of independent variables (Jiji, 2003). This process256

is also know as the change of variables or combination of variables method. One257

of such combination of variables is the Boltzmann variable, which is encountered258

in the solution of transient flow through porous media.259

260

Similarity techniques is typically implemented after the single-phase diffusivity261

equation for a flow phenomenon has been linearized. This method can however262

be extended to multiphase flow problems nonetheless, since most oil reservoirs263

experience multiphase flow during production, and their flow equations are highly264

nonlinear (Tabatabaie and Pooladi-Darvish, 2016).265

2.5.1 Boltzmann Variable266

Boltzmann (1894) pioneered the use of similarity variables in his work on Fick’s267

second law by converting it into an ordinary differential equation. Several classic268

engineering books utilize the concept of the similarity variable theory in order269

to establish analytical solutions of various phenomena of interest. Carslaw and270

Jaeger (1959), explored the use of the Boltzmann’s transformation ξ = r/
√
t271

to find solutions of heat conduction problems and employed several other vari-272

able transformations that made possible the establishment of analytical solutions.273

Bird et al. (2002) researched on several transport problems of fluid flow, heat and274

mass transfer. In their study, the use of the method of similarity approxima-275

tions (also known as the method of combination of variables) was pivotal for the276

transformation of partial differential equations (PDEs) into one or more ordinary277

differential equations (ODEs). This approach was extended to attain analytical278

solutions.279

280

The process of carrying out well test analysis in oil and gas engineering has been281

centered on the concept of the exponential integral solution, which yeilds upon282

applying the similarity theory to the partial differential equations; typically for283
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single phase flow in porous media in a radial geometry. Over the years, the284

application of the similarity theory has proved beneficial in the area of reservoir285

engineering (Ayala and Kouassi, 2007).286

2.6 Numerical Simulation of Fluid Flow in Hy-287

drocarbon Reservoirs288

Attempts to finding exact solutions to some of the differential equations describ-289

ing fluid flow in porous media prove somewhat impossible or very time consuming290

to carry out (Kamyabi, 2014). Therefore numerical analysis provides a means to291

address this issue by creating a sequence of approximants to the exact solution292

to solve the flow problem. Numerical approaches are initiated through discretiza-293

tion of the continuous differential equations. Although there exist several methods294

that offer means to obtain these approximate solutions to flow problems, it ap-295

pears that the most widely used method is the Finite Difference Method (FDM)296

which is elaborated in detail by Aziz and Settari (1979).297

298

2.6.1 Discretization299

In the finite difference method, the derivatives in differential equations are approx-300

imated using the Taylor’s expansion. Forward, backward and central differences301

are the three forms in this method commonly used to obtain the approximations302

of numerical derivatives. Thus, derivatives spanning from differential equations303

are substituted with finite difference equations (Stevenson et al., 1991).304

305

Considering a function w expressed in terms of x. Given the nodal values of306

as shown in Figure (2.3), the first-order derivatives of w with respect x can be307

approximated by:308
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Figure 2.3: Illustration of grid point discretization in 1-Dimension

∂w

∂x
=
wi+1 − wi

∆x
+O(∆x) (2.19)

Or

∂w

∂x
=
wi − wi−1

∆x
+O(∆x) (2.20)

Equation (2.19) and Equation (2.20) represent the forward difference and back-

ward difference approximations respectively of the first order derivative of w in

terms of x. These two approximations are collectively called first-order approx-

imations since their remainders (truncation error) are in order of O(∆x)- First

order. However, taking the average of the forward and backward differences yields

the central difference approximation, which has an order of O(∆x)2-Second or-

der. Hence, this makes the central difference more precise than the previous

approximations (Kamyabi, 2014). The central difference approximation for the

first order derivative of w in terms of x is given as:

∂w

∂x
=
wi+1 − wi−1

2∆x
+O(∆x)2 (2.21)

Similarly, the second order derivative of w in terms of x can be expressed as:

∂w

∂x
=
wi+1 − 2wi + wi−1

(∆x)2
+O(∆x)2 (2.22)

Several finite difference formulations are in existence to approximate higher or-309

der derivatives as well as multi-dimensional derivatives using the combination310

of one dimensional finite difference approximations in different dimensions.(Aziz311
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and Settari, 1979)312

313

1. Spatial discretization involves the division of the continuous simulation314

domain into grid points or blocks depending on the order of the spatial315

dimension (Kamyabi, 2014). The interval(size) between grid points(blocks)316

is important in the running time and consistency of fluid flow simulations.317

Depending on the system complexity, the interval lengths or block sizes can318

be uniform or variable (Stevenson et al., 1991). In a more general sense,319

fine spatial discretizations typically yield better approximations compared320

to coarse spatial discretizations.321

2. Temporal discretization is carried out by dividing simulation time into

timesteps. It is suitable that, timestep can neither be too short because

of the computation restrictions nor too big due to the consistency issues

(Kamyabi, 2014). From the viewpoint of reservoir engineering time dis-

cretization schemes must be stable, robust and computationally efficient.

Forward differencing (explicit) methods, for example, are only stable for

time steps constrained by:

∆t ≤ k(∆x)2

where, ∆t and ∆x are the temporal and spatial intervals respectively and k322

is some constant. Implicit methods on the other hand are unconditionally323

stable.(Stevenson et al., 1991)324

2.6.2 Courant-Friedrichs-Lewy condition325

The Courant-Friedrichs-Lewy (CFL) condition is an essential condition that insti-

tutes convergence when numerically solving certain partial differential equations

(PDEs) by the method of finite differences. This condition is essential in the nu-

merical analysis of explicit time schemes. The condition is based on the Courant
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number which is a dimensionless number expressed as a function of timestep,

gridblock size or grid-point interval, and the velocity at that gridblock or point

(Trefethen, 1994). The Courant number is expressed as:

c = ∆t
n∑
i=1

uxi
∆xi

≤ Cmax (2.23)

where the indices i and n show the current and maximum values of dimension in326

space. This equation implies that the solution is more stable at small values of327

Courant number as well as timestep on the condition that, the method used is328

not unconditionally stable.329

330

The value of Cmax changes with the method used to solve the discretized equa-331

tion, especially depending on whether the method is explicit or implicit. If an332

explicit scheme is used then typically Cmax = 1. Implicit schemes are usually less333

sensitive to numerical instability and so larger values of Cmax may be satisfactory334

(Kamyabi, 2014).335

336

2.6.3 Linearization Schemes337

The discretization of the differential equations describing multiphase flow in hy-338

drocarbon reservoirs produces non-linear coupled difference equations which need339

to be properly resolved. Some of the linearization techniques utilized to han-340

dle non-linearities in reservoir simulation include; fully Implicit (FI), Implicit-341

Pressure-Explicit-Saturation (IMPES), and Adaptive Implicit Methods (AIM).342

In this work, the IMPES method is adopted.343

344
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Implicit Pressure Explicit Saturation (IMPES)345

Sheldon B. Aker (1959) is among the first researchers to implement the IMPES346

method in their works. This method yields less computational error and it is com-347

putationally fast when implemented making it more favorable (Kamyabi, 2014).348

The underlining principle of this technique applied in multiphase flow is to decou-349

ple the problem into the pressure and saturation equations after a combination350

of the flow equations. After the pressure has been advanced in time, the fluid351

saturations are updated explicitly. This process is repeated for the entire simu-352

lation time allowable (Peaceman, 1977).353

354
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Chapter 3355

Methodology356

Among the techniques usually used to solve transient fluid flow problems, the357

similarity solution is one which is widely used in the petroleum engineering liter-358

ature. In this chapter, the study presents the model that describes the multiphase359

flow in tight oil reservoirs under some assumptions.360

361

In subsequent sections, it is shown that the simultaneous flow of oil and gas in one362

dimensional cylindrical coordinates can be converted to two nonlinear ODEs for363

pressure and saturation when the Boltzmann variable is used. This means that364

the pressure and saturation solutions can be written as unique functions of the365

Boltzmann variable, requiring that saturation be considered as solely a function366

of pressure.367

3.1 Radial Diffusivity Equation368

The radial diffusivity equation is considered one of the most salient and widely369

used mathematical expressions in the petroleum industry. The equation is par-370

ticularly applied to the analysis of well testing data. In this study, the radial371

diffusivity equation is used as the basic block for constructing the flow model.372

Under a set of assumptions placed on the flow phenomenon, the three (3) gov-373

erning equations needed in deriving the radial diffusivity equation are combined.374

These governing equations include:375

1. The law of mass conservation (Continuity equation).376

2. Darcy’s empirical law.377

3. Equation of state.378
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3.1.1 Assumptions379

The mathematical model considered in this study describes the isothermal radial380

flow of oil and gas under the following assumptions:381

1. Formation is a homogeneous and isotropic porous media of uniform thick-382

ness.383

2. Reservior volume drained by the well is circular ,horizontal and of constant384

thickness385

3. A central well is perforated across the entire formation thickness. Hence;386

radial flow.387

4. No oil is dissolved in the gas phase388

5. Capillary and gravity effects are negligible.389

6. Reservoir producing at a constant flowing pressure.390

7. Water saturation is assumed to be immobile and is considered to be a part391

of the rock volume.392

8. Flow region is free of sources and sinks.393

3.2 Mathematical Formulation394

Here, the flow of oil and gas in porous media is described by the well known Black395

Oil formulation applied to two-phase fluid flow (Aziz and Settari, 1979). A com-396

bination of the mass conservation equations (continuity equation) with Darcy’s397

empirical law yield differential equations that describe the flow of hydrocarbons398

in a reservoir. In this study, the equations used in describing the 1-dimensional399

radial flow of oil and gas respectively, are represented by:400
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1

r

∂

∂r

(
r
kkro
µoBo

∂p

∂r

)
=

∂

∂t

(
φSo
Bo

)
(3.1)

1

r

∂

∂r

[
rk

(
Rs

kro
µoBo

+
krg
µgBg

)
∂p

∂r

]
=

∂

∂t

[
φ

(
RsSo
Bo

+
Sg
Bg

)]
(3.2)

where:401

r=radius k=absolute permeability402

φ=porosity Bi=phase formation volume factor403

µi=phase viscosity Si=phase saturation404

Rs= Solution gas ratio kri=phase relative permeability405

i= indicator for fluid phases(oil(o) and gas(g))406

407

The fluid flow, Equation (3.1) and Equation (3.2) present a set of coupled, nonlin-408

ear PDEs. The basic equations can be mathematically manipulated into several409

alternate forms with various choices of primary dependent variables (Chen and410

Ewing, 1997). The choice of equation form and primary solution defined by411

variables have considerable implications for the mathematical analysis and the412

numerical method used to solve these equations (Chen and Ewing, 1997).413

(a) A 1D flow geometry

(b) A 3D flow geometry

Figure 3.1: Radial flow representation of the hydrocarbons into the well-
bore.(NomadicGeo, 2016)
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Equation (3.1) and Equation (3.2) represent radial flow of oil and gas respectively.414

A pictorial perspective of the flow geometry is shown in Figure (3.1). Considering415

the equation describing gas flow, its worthwhile to note how the PDE accounts416

for both gases dissolved in solution and those that evolve out of the solution417

when in-situ pressures fall below bubble point pressure. This is accomplished by418

utilizing the solution oil-gas ratio (Rs). All other parameters and symbols are419

defined in the nomenclature.420

3.3 Similarity Transformation of The Model421

In this section, a step-wise procedure is performed to facilitate the similarity422

transformation of the diffusivity equations into ODEs using the Boltzmann vari-423

able. For the purpose of a quick transformation, the original equations (Equation424

(3.1) and Equation (3.2)) are reduced to simple forms using the parameters de-425

fined in Table (3.1).426

427

Table 3.1: Definition of Parameters

Parameter Definition

α
kkro
µoBo

β
φSo
Bo

b
RsSo
Bo

+
Sg
Bg

R Rs +
krgµoBo

kroµgBg

3.3.1 Similarity Transformation of the Oil Equation428

First, the diffusivity equation describing one-dimensional radial flow of oil, which429

is given as:430
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1

r

∂

∂r

(
r
kkro
µoBo

∂p

∂r

)
=

∂

∂t

(
φSo
Bo

)
(3.3)

is simplified to Equation (3.6) by substituting the parameters given by Equation431

(3.4) and Equation (3.5)432

α =
kkro
µoBo

(3.4)

β =
φSo
Bo

(3.5)

The reduced form of Equation (3.3) to Equation (3.6) presents the equation upon

which the similarity transformation is carried out.

1

r

∂

∂r

(
rα
∂p

∂r

)
=
∂β

∂t
(3.6)

At this point, the Boltzmann variable (given as ξ =
r√
t
) is introduce. In order433

to carry out the transformation, the first derivatives of ξ with respect to r and t434

are required and are given as:435

∂ξ

∂r
=

1√
t

=
1√
t

=
1

r

r√
t

=
ξ

r
(3.7)

∂2ξ

∂r2
= 0 (3.8)

∂ξ

∂t
= − r√

t

1

2t
= − ξ

2t
(3.9)

From Equation (3.6), expanding the left hand side yields:

∂

∂r

(
α
∂p

∂r

)
+

1

r

(
α
∂p

∂r

)
=
∂β

∂t
(3.10)

A change of variables is performed by implementing the chain rule on Equation

(3.10),to introduce the derivatives of the Boltzmann variable.

∂ξ

∂r

∂

∂ξ

(
α
∂ξ

∂r

∂p

∂ξ

)
+

1

r

(
α
∂ξ

∂r

∂p

∂ξ

)
=
∂ξ

∂t

∂β

∂ξ
(3.11)
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Further expansion of Equation (3.11) gives:

∂ξ

∂r

[
∂

∂ξ

(
α
∂ξ

∂r

)
∂p

∂ξ
+ α

∂ξ

∂r

∂2p

∂ξ2

]
+
α

r

∂ξ

∂r

∂p

∂ξ
=
∂ξ

∂t

∂β

∂ξ
(3.12)

By grouping terms, Equation (3.12) gives:

α

(
∂ξ

∂r

)2
∂2p

∂ξ2
+

[
∂ξ

∂r

∂

∂ξ

(
α
∂ξ

∂r

)
+
α

r

∂ξ

∂r

]
∂p

∂ξ
=
∂ξ

∂t

∂β

∂ξ
(3.13)

Dividing through Equation (3.12) by

(
∂ξ

∂r

)2

and expanding derivatives gives:436

α
∂2p

∂ξ2
+

1(
∂ξ

∂r

)2

[
∂

∂r

(
α
∂ξ

∂r

)
+
α

r

∂ξ

∂r

]
∂p

∂ξ
=

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.14)

α
∂2p

∂ξ2
+

1(
∂ξ

∂r

)2

[
∂α

∂r

∂ξ

∂r
+ α

∂2ξ

∂r2
+
α

r

∂ξ

∂r

]
∂p

∂ξ
=

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.15)

α
∂2p

∂ξ2
+

1(
∂ξ

∂r

)2

[
∂ξ

∂r

∂α

∂xi

∂ξ

∂r
+ α

∂2ξ

∂r2
+
α

r

∂ξ

∂r

]
∂p

∂ξ
=

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.16)

From Equation (3.8),
∂2ξ

∂r2
= 0,hence Equation (3.16) simplifies to:

α
∂2p

∂ξ2
+

∂α∂ξ +
α

r

1(
∂ξ

∂r

)
 ∂p∂ξ =

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.17)

Substituting Equation (3.7) and Equation (3.9) into Equation (3.17) gives:437

α
∂2p

∂ξ2
+

[
∂α

∂ξ
+
α

ξ

]
∂p

∂ξ
= −ξ

2

∂β

∂ξ
(3.18)

α
∂2p

∂ξ2
+
∂α

∂ξ

∂p

∂ξ
+
α

ξ

∂p

∂ξ
= −ξ

2

∂β

∂ξ
(3.19)

The first and second terms of Equation 3.19 are re-written to yield an equation

(Equation 3.20) for the oil equation in terms of the Boltzmann variable. This
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concludes the similarity transformation of the oil equation.

∂

∂ξ

(
α
∂p

∂ξ

)
+
α

ξ

∂p

∂ξ
= −ξ

2

∂β

∂ξ
(3.20)

Since the PDE Equation (3.20) is only dependent on the Boltzmann variable it

is re-written as an ODE in the form:

d

dξ

(
α
dp

dξ

)
+
α

ξ

dp

dξ
= −ξ

2

∂β

∂ξ
(3.21)

3.3.2 Similarity Transformation of the Gas Equation438

Next, the diffusivity equation describing one-dimensional radial flow of gas is439

considered.440

1

r

∂

∂r

[
rk

(
Rs

kro
µoBo

+
krg
µgBg

)
∂p

∂r

]
=

∂

∂t

[
φ

(
RsSo
Bo

+
Sg
Bg

)]
(3.22)

By using the following parameters, the diffusivity equation given by Equation441

3.22) is simplified to Equation 3.26)442

α =
kkro
µoBo

(3.23)

b =
RsSo
Bo

+
Sg
Bg

(3.24)

R = Rs +
krgµoBo

kroµgBg

(3.25)

The reduced equation is obtained as:

1

r

∂

∂r

(
rRα

∂p

∂r

)
=
∂b

∂t
(3.26)

Again, the Boltzmann variable (given as ξ =
r√
t
) is introduce to carry out the443

similarity transformation. The first derivatives of ξ with respect to r and t nec-444
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essary to perform this task which are obtained below.445

∂ξ

∂r
=

1√
t

=
1√
t

=
1

r

r√
t

=
ξ

r
(3.27)

∂2ξ

∂r2
= 0 (3.28)

∂ξ

∂t
= − r√

t

1

2t
= − ξ

2t
(3.29)

Now, expanding the left hand side of Equation 3.26) yields:

∂

∂r

(
Rα

∂p

∂r

)
+

1

r

(
Rα

∂p

∂r

)
=
∂b

∂t
(3.30)

By implementing the chain rule on Equation (3.30), a change of variable is brought

forth to enable the introduction of the derivatives of the Boltzmann variable.

∂ξ

∂r

∂

∂ξ

(
Rα

∂ξ

∂r

∂p

∂ξ

)
+

1

r

(
Rα

∂ξ

∂r

∂p

∂ξ

)
=
∂ξ

∂t

∂b

∂ξ
(3.31)

Further expansion of Equation (3.31) gives:

∂ξ

∂r

[
∂

∂ξ

(
Rα

∂ξ

∂r

)
∂p

∂ξ
+Rα

∂ξ

∂r

∂2p

∂ξ2

]
+
Rα

r

∂ξ

∂r

∂p

∂ξ
=
∂ξ

∂t

∂b

∂ξ
(3.32)

By grouping terms, Equation (3.32) gives:

Rα

(
∂ξ

∂r

)2
∂2p

∂ξ2
+

[
∂ξ

∂r

∂

∂ξ

(
Rα

∂ξ

∂r

)
+
Rα

r

∂ξ

∂r

]
∂p

∂ξ
=
∂ξ

∂t

∂b

∂ξ
(3.33)
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Dividing through Equation (3.33) by

(
∂ξ

∂r

)2

and expanding derivatives gives:446

Rα
∂2p

∂ξ2
+

1(
∂ξ

∂r

)2

[
∂

∂r

(
Rα

∂ξ

∂r

)
+
Rα

r

∂ξ

∂r

]
∂p

∂ξ
=

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.34)

Rα
∂2p

∂ξ2
+

1(
∂ξ

∂r

)2

[
∂(Rα)

∂r

∂ξ

∂r
+Rα

∂2ξ

∂r2
+
Rα

r

∂ξ

∂r

]
∂p

∂ξ
=

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.35)

Rα
∂2p

∂ξ2
+

1(
∂ξ

∂r

)2

[
∂ξ

∂r

∂(Rα)

∂xi

∂ξ

∂r
+Rα

∂2ξ

∂r2
+
Rα

r

∂ξ

∂r

]
∂p

∂ξ
=

1(
∂ξ

∂r

)2

∂ξ

∂t

∂β

∂ξ
(3.36)

From Equation (3.28),
∂2ξ

∂r2
= 0, hence Equation (3.36) simplifies to:

Rα
∂2p

∂ξ2
+

∂(Rα)

∂ξ
+
Rα

r

1(
∂ξ

∂r

)
 ∂p∂ξ =

1(
∂ξ

∂r

)2

∂ξ

∂t

∂b

∂ξ
(3.37)

Substituting Equation (3.27) and Equation (3.29) into Equation (3.37) gives:447

Rα
∂2p

∂ξ2
+

[
∂(Rα)

∂ξ
+
Rα

ξ

]
∂p

∂ξ
= −ξ

2

∂b

∂ξ
(3.38)

Rα
∂2p

∂ξ2
+
∂(Rα)

∂ξ

∂p

∂ξ
+
Rα

ξ

∂p

∂ξ
= −ξ

2

∂β

∂ξ
(3.39)

Expanding the derivative of the second term in Equation (3.39) gives:

Rα
∂2p

∂ξ2
+R

∂α

∂ξ

∂p

∂ξ
+ α

∂R

∂ξ

∂p

∂ξ
+
Rα

ξ

∂p

∂ξ
= −ξ

2

∂b

∂ξ
(3.40)

Equation (3.40) is re-written as:

α
∂R

∂ξ

∂p

∂ξ
+R

∂

∂ξ

(
α
∂p

∂ξ

)
+
Rα

ξ

∂p

∂ξ
= −ξ

2

∂b

∂ξ
(3.41)
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Recalling the oil equation(Equation (3.20)) given below

∂

∂ξ

(
α
∂p

∂ξ

)
+
α

ξ

∂p

∂ξ
= −ξ

2

∂β

∂ξ
(3.42)

and further expanded to:

=⇒ ∂

∂ξ

(
α
∂p

∂ξ

)
= −ξ

2

∂β

∂ξ
− α

ξ

∂p

∂ξ
(3.43)

Substituting Equation (3.43) into Equation (3.41) gives:

α
∂R

∂ξ

∂p

∂ξ
+R

[
−ξ

2

∂β

∂ξ
− α

ξ

∂p

∂ξ

]
+
Rα

ξ

∂p

∂ξ
= −ξ

2

∂b

∂ξ
(3.44)

Expanding and simplifying terms in Equation (3.44) yields a diffusivity equation

in terms of the Boltzmann variable. This is the similarity transform of the gas

equation

α
∂R

∂ξ

∂p

∂ξ
=
ξ

2

[
R
∂β

∂ξ
− ∂b

∂ξ

]
(3.45)

Since the PDE Equation (3.45) is only dependent on the Boltzmann variable,it

is re-written as an ODE in the form:

α
∂R

∂ξ

dp

dξ
=
ξ

2

[
R
∂β

∂ξ
− ∂b

∂ξ

]
(3.46)

3.3.3 Summary448

The Boltzmann variable which is given as ξ =
r√
t

is used to carry out the simi-449

larity transformation of the flow problem. The Boltzmann variable is introduced450

to convert Equation (3.1) and Equation (3.2) into a coupled pair of ODEs:451

d

dξ

(
α
dp

dξ

)
+
α

ξ

dp

dξ
= −ξ

2

∂β

∂ξ
(3.47)

α
∂R

∂ξ

dp

dξ
=
ξ

2

[
R
∂β

∂ξ
− ∂b

∂ξ

]
(3.48)
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From Equation (3.1) through Equation (3.48), p and So represent the pressure and452

oil saturation, respectively, and all other parameters (α, β, b, and R) are functions453

of pressure and saturation, as defined in Table (3.1). Note that all partial deriva-454

tives in Equation (3.47) and Equation (3.48) are related to Pressure-Volume-455

Temperature (PVT) properties and relative permeability functions; which are all456

assumed to be known.457

458

Equation (3.47) and Equation (3.48) are then be solved numerically as a system of459

two equations and two unknowns to find pressure and saturation profiles under460

suitable boundary conditions. This process yields the semi-analytic similarity461

solution of the problem.462

3.4 Semi-Analytic Similarity Solution463

In this section, the semi-analytical solutions to the ODEs derived from the simi-464

larity transformation is developed for pressure and saturation. First, a pressure465

and saturation equations are obtained466

3.4.1 Pressure Equation467

From Equation (3.47), the ODE for oil flow is expressed as:

d

dξ

(
α
dp

dξ

)
+
α

ξ

dp

dξ
= −ξ

2

∂β

∂ξ
(3.49)

Since β is a function of p and So, Equation (3.49) expanded to:

d

dξ

(
α
dp

dξ

)
+
α

ξ

dp

dξ
= −ξ

2

[
∂β

∂p

dp

dξ
+

∂β

∂So

dSo

dξ

]
(3.50)

Equation (3.50) has two unknowns, pressure and saturation. If saturation were468

known, Equation (3.50) could be solved directly to find pressure as a function of469
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the Boltzmann variable. However, saturation profile is not known at priori. In470

order to complete the system of equations and unknowns, Equation (3.48) of gas471

is employed to obtain a saturation equation.472

3.4.2 Saturation Equation473

From Equation (3.48), the ODE for gas flow is expressed as:

α
∂R

∂ξ

dp

dξ
=
ξ

2

[
R
∂β

∂ξ
− ∂b

∂ξ

]
(3.51)

Since R, b and β are a function of p and So, Equation (3.51) is expanded to:

α

(
∂R

∂p

dp

dξ
+
∂R

∂So

So

dξ

)
dp

dξ
=
ξ

2

[
R

(
∂β

∂p

dp

dξ
+

∂β

∂So

So

dξ

)
−
(
∂b

∂p

dp

dξ
+

∂b

∂So

So

dξ

)]
(3.52)

Re-arranging the Equation (3.51) yields the saturation equation as:

dSo
dξ

= −dp
dξ

 2α
dp

dξ

∂R

∂p
− ξ

(
R
∂β

∂p
− ∂b

∂p

)
2α
dp

dξ

∂R

∂So
− ξ

(
R
∂β

∂So
− ∂b

∂So

)
 (3.53)

3.4.3 Boundary Conditions474

One initial condition on saturation and two boundary conditions on pressure are475

sufficient to solve Equation (3.50) and Equation (3.53) simultaneously. Equa-476

tion (3.50) and Equation (3.53) constitute a system of two equations and two477

unknowns which can be solved together to find pressure and saturation profiles478

as a function of the Boltzmann variable. it can be observed from Equation (3.50)479

and Equation (3.53) that, the pressure and saturation are unique functions of the480

Boltzmann variable, ξ.481

34



3.4.4 Solving for p and So in terms of ξ482

In order to numerically solve the ODEs of Equation (3.50) and Equation (3.53),483

the non linearity introduced by α and R are assumed negligible. This simplifies484

the ODEs to:485

α
d2p

dξ2
+
α

ξ

dp

dξ
= −ξ

2

(
∂β

∂p

dp

dξ
+
∂β

∂So

dSo
dξ

)
(3.54)

dSo
dξ

= −dp
dξ


(
R
∂β

∂p
− ∂b

∂p

)
(
R
∂β

∂So
− ∂b

∂So

)
 (3.55)

The resulting ODEs (Equation (3.54) and Equation (3.55)) facilitate the determi-486

nation of pressure and saturation profiles exiting in the reservoir. This procedure487

offers a quick calculation of the reservoir performance and avoids the lengthy cal-488

culations inherent in solving the original PDEs. Equation (3.54) and Equation489

(3.55) are solved numerically by the finite difference method. The steps adopted490

in executing this task are as follows:491

1. Substitute Equation (3.55) into Equation (3.54)492

2. Discretize the resulting equation and Equation (3.55) using the finite differ-493

ence approximations for the derivatives and assign uniform saturation and494

pressure profiles, equal to the initial saturation and pressure, to all grid495

points.496

3. Solve the equation found in Step 1 together with the appropriate boundary497

conditions to find the pressure profile.498

4. Using the pressure profile found in the previous step; solve Equation (3.55)499

to find the saturation profile.500

5. Using the new saturation profile found in the previous step, calculate the501

pressure profile from the equation obtained in Step 1.502
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6. Steps 4 and 5 are repeated until convergence is achieved.503

3.5 Full Numerical Solution504

The PDEs associated with the flow phenomenon in this work are highly non-505

linear. Due to this challenge, the solution to the PDEs are obtained by a numer-506

ical approximation. This section briefly accounts for the full numerical approach507

undertaken to solve the PDEs describing the flow of oil and gas. Here, the differ-508

ential equations are solved, by adopting the IMPES (Implicit-Pressure-Explicit-509

Saturation) scheme.510

511

The fundamental principle of the IMPES method is to obtain a single pressure512

equation by a combination of the flow equations. Once pressure is implicitly513

computed for the new time, saturation is updated explicitly. The following is a514

brief description of the initial steps undertaken to solve the PDE system given515

by:516

1

r

∂

∂r

(
r
kkro
µoBo

∂p

∂r

)
=

∂

∂t

(
φSo
Bo

)
(3.56)

1

r

∂

∂r

[
rk

(
Rs

kro
µoBo

+
krg
µgBg

)
∂p

∂r

]
=

∂

∂t

[
φ

(
RsSo
Bo

+
Sg
Bg

)]
(3.57)

Similar to the earlier approach, Equation (3.56) and Equation (3.57) are used to517

derive pressure and saturation equations, which are necessary to solve for the two518

unknowns (pressure and saturation) under suitable boundary conditions.519

3.5.1 Pressure Equation520

The first step is to obtain the pressure equation, by combining flow equations of521

the oil and gas as follows:522

Equation (3.56) multiplied by (Bw − RsBg) and Equation (3.57) multiplied by523

Bg are added. In this way, the right hand side (RHS) of the resulting equation524
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is:525

Bg
∂

∂t

[
φ

(
Rs

So
Bo

+
Sg
Bg

)]
+ (Bo −RsBg)

∂

∂t

[
φ
So
Bo

]
(3.58)

Using the chain rule to expand the time derivatives of the obtained expression526

and carrying out some computations and rearrangements, further simplifies the527

right hand side expression to:528

φ

[
Sg

(
− 1

Bg

∂Bg

∂p

)
+ Sg

(
− 1

Bo

∂Bo

∂p
+
Bg

Bo

∂Rs

∂p

)]
∂p

∂t
(3.59)

Here, in Equation (3.58) all time derivatives of saturation resolve out. This is529

because the state of the reservoir requires that; So + Sg = 1530

531

Taking note of the following mathematically derived approximate compressibili-532

ties, that is:533

1. Gas compressibility: cg = − 1

Bg

∂Bg

∂p
534

2. Oil compressibility: co = − 1

Bo

∂Bo

∂p
+
Bg

Bo

∂Rs

∂p
535

3. Total compressibility: ct = Sgcg + Soco536

the right hand side is expressed as:

φct
∂p

∂t
(3.60)

where, the formation compressibility cf is considered negligible.537

538

Introducing the left hand side (LHS) of the combined Equations ((3.56) and

(3.57)) gives the pressure equation as:

(Bo −RsBg)
1

r

∂

∂r

(
r
kkro
µoBo

∂p

∂r

)
+Bg

1

r

∂

∂r

[
rk

(
Rs

kro
µoBo

+
krg
µgBg

)
∂p

∂r

]
= φct

∂p

∂t

(3.61)
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Equation (3.61) is further reduced by introducing the parameters given in Table

(3.1) to:

(Bo −RsBg)
1

r

∂

∂r

(
rα
∂p

∂r

)
+Bg

1

r

∂

∂r

(
rRα

∂p

∂r

)
= φct

∂p

∂t
(3.62)

3.5.2 Saturation Equation539

Equation (3.56) which describe the radial flow of oil given below as;540

1

r

∂

∂r

(
r
kkro
µoBo

∂p

∂r

)
=

∂

∂t

(
φSo
Bo

)
(3.63)

is used to determine the saturation profile once the pressure profile is obtained541

from Equation (3.62)542

3.5.3 Solving for p and So in terms of r and t543

By the finite difference method, Equation (3.62)) and Equation (3.63) are dis-544

cretized. The system of equations that result is linearized by evaluating the545

pressure and saturation dependent functions (Pressure-Volume-Temperature pa-546

rameters, fluid viscosities and relative permeabilities) in the pressure and satura-547

tion values of the previous time step.548

The pressure equation is solved implicitly while the saturation equation is solved549

explicitly (IMPES scheme). This is carried out under a suitable stability restric-550

tions for appropriate time steps (Maciasa et al., 2013). To accomplish this task,551

a computer algorithm is is written to carry out the computation of the system of552

equations that evolve from the problem.553

3.5.4 Flowchart of the Algorithm for the Numerical Ap-554

proach555

The computational tool adopts the IMPES method as the linearizing scheme in556

solving the PDEs. The Figure (B.1), at the appendix, illustrates the flow chart557
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of the implemented algorithm. The algorithm first, solves for the flow pressure558

implicitly. This new pressure value is used to update flow parameters in order to559

obtain the saturation explicitly. Afterwards, the algorithm proceeds to the next560

time-step to repeat the process.561

3.6 Production Profile562

Once the pressure and saturation profiles for both the similarity and numerical

approaches are obtained, the Darcy’s law is used to estimate the oil production

rate. Under radial flow, oil rates can be expressed as:

qo = A
kkro
µoBo

∂p

∂r

∣∣∣
r=rw

(3.64)

where all parameters are defined in the Nomenclature section. Equation (3.64)

can however be re-written in terms of the Boltzmann variable as:

qo = A
kkro
µoBo

1√
t

dp

dξ

∣∣∣
ξ=0

(3.65)

The change of variable causes the derivative to be dependent on ξ. Evidently,563

the slow nature of the flow process is also accounted for; by the introduction of564

√
t. This equation suggests that, the oil rate is inversely proportional to

√
t.565

3.7 Analytical Solution for an Infnite Acting Sys-566

tem567

In this section, steps are undertaken to develop an analytical solution to the flow568

equations after the similarity transformations has been performed. The analyti-569

cal solution is developed for a limiting case of short producing time at constant570

pressure production.571

572
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Recalling the ODEs resulting from the similarity transformation, that is;573

d

dξ

(
α
dp

dξ

)
= −ξ

2

(
∂β

∂p

dp

dξ
+
∂β

∂So

dSo
dξ

)
(3.66)

dSo
dξ

= −dp
dξ

 2α
dp

dξ

∂R

∂p
− ξ

(
R
∂β

∂p
− ∂b

∂p

)
2α
dp

dξ

∂R

∂So
− ξ

(
R
∂β

∂So
− ∂b

∂So

)
 (3.67)

The above equation are solved with the following boundary conditions:574

p = pw, ξ = 0 (3.68)

p = pe, ξ →∞ (3.69)

So = 1, ξ →∞ (3.70)

Evidently, solving the ODEs in Equation (3.66) and Equation (3.67) requires ini-575

tial and boundary conditions. Since Equation (3.66) is a second order ODE and576

Equation (3.67) is a first order ODE, two boundary conditions for pressure and577

an initial condition for saturation are sufficient to arrive at a solution. Under578

the assumption of an infinite acting reservoir, with constant pressure production579

at the wellbore, the conditions given by Equations (3.68), (3.69) and (3.70) apply.580

581

Equation (3.68) indicates that, the pressure is constant and equal to pw at the582

producing face, whereas Equation (3.69) and Equation (3.70) represent the pres-583

sure and saturation, respectively, as uniform initially (that is, at t = 0) and584

remain unchanged at the far boundary ( r →∞).585

586

3.7.1 Pressure Solution587

The analytical solution for pressure is obtained by first substituting, Equation588

(3.67) into Equation (3.66) and evaluating the resulting equation for very large589

values of ξ (ξ →∞).590
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591

In order to reduce the non-linearity associated with Equation (3.66), the two592

phase pseudopressure(m) is introduced. This approach was adopted by several593

authors including Fetkovich (1973), Raghavan (1976) and Behmanesh (2016) in594

their study of reservoir flow behavior. In this study, a similar approach is used595

and the two phase pseudopressure is expressed as:596

m(p) =
1

αi

p∫
pb

αdp =
µoiBoi

kik∗ro

p∫
pb

kkro
µoBo

dp (3.71)

where; dm =
α

αi
dp.597

Substituting Equation (3.71) into Equation (3.66) under the defined limiting as-598

sumption yields:599

d2m

dξ2
+

ξ

2η∞

dm

dξ
= 0 (3.72)

where:600

η∞ =
α

∂β

∂p
+
∂β

∂So

dSo
dp

(3.73)

Replacing the full expressions for α and β into Equation (3.73) gives601

η∞ =
kkro
φµoc∗t

1

fo
(3.74)

c∗t =
SoBo

Bo

dRs

dp
− Sg
Bg

dBg

dp
− So
Bo

dBo

dp
+

1

φ

dφ

dp
(3.75)

fo =
1

1 +
krg
kro

µo
µg

(3.76)

Equation (3.74) is similar to the well known hydraulic diffusivity of a single phase602

reservoir, adjusted to reflect the effect of two phase flow and the evolution of gas603

out of the oil when the pressure drops below the bubble point pressure. Equation604
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(3.75) and Equation (3.76) on the other hand, account for the total compressibil-605

ity of the fluids, and fractional flow of oil respectively.606

607

Besides the mathematical derivation of Equation (3.75) and Equation (3.76), they608

imbibe varying physical interpretation. The different terms of Equation (3.75)609

are explained as follows:610

1. The first term

((
SoBg

Bo

)
dRs

dp

)
represents the amount of gas released per611

unit pore volume at reservoir conditions during the pressure drop of dp and612

is a positive quantity.613

2. The second term

((
Sg
Bg

)
dBg

dp

)
represents the effect of gas compressibility614

on the flow.615

3. The third term

((
So
Bo

)
dBo

dp

)
represents the effect of oil compressibility.616

4. The last term

((
1

φ

)
dφ

dp

)
is the pore compressibility which may be con-617

sidered as negligible in some simplifying cases.618

The fractional flow equation, Equation (3.76), is akin to the conventional form of619

the Buckley Leverett fractional flow equation, which is employed, when oil dis-620

places gas in a horizontal reservoir. This equation shows that, as the gas mobility621 (
krg
µg

)
decreases, fo increases. Consequently, when fo increases, the term c∗tfo622

which represents the energy of the reservoir, increases which implies an increased623

oil recovery.624

625

However, it should be duly noted that, evaluating the two phase pseudopressure,626

m requires the relationship between saturation and pressure. Tabatabaie and627

Pooladi-Darvish (2016) in their work on multiphase flow showed that Equation628

(3.77) can be used to approximate the saturation pressure relationship for cases629

of this nature.630
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So(p) = 1 + µoiBgi

(
dRs

dp

)
i

∫ p

pi

1

µoBo

dp (3.77)

Equation (3.77) offers independence from absolute permeability and relative per-631

meability curves. Therefore, the right hand side of Equation (3.77) presents a sole632

function of pressure. Thus the saturations of fluids under prevailing pressures can633

be readily evaluated. Several attempts have also been established in literature634

to obtain a function for saturation in terms of pressure. For example: Raghavan635

(1976) suggested using the producing GOR to establish the saturation-pressure636

relationship. Behmanesh (2016) developed an alternative solution to establish the637

saturation-pressure relationship, and they solved it numerically. The formulation638

presented in Equation (3.77) is direct and does not require a numerical solution.639

640

At this point, an analytical solution of Equation (3.72) is possible if the variation

of η∞ with m is considered negligible. This assumption renders Equation (3.72)

into a linear ODE, which for constant pressure production can be solved together

with the boundary conditions in Equation (3.68) and Equation (3.69) to obtain:

m(ξ) = (mi −mw)Erfc

(
ξ

2
√
η∞

)
(3.78)

where mi and mw are two phase pseudopressures evaluated at the initial and

flowing pressure respectively. Assuming that all terms in η∞ are constant and

equal to their initial values, η∞i, Equation (3.78) becomes:

m(ξ) = (mi −mw)Erfc

(
ξ

2
√
η∞i

)
(3.79)
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3.7.2 Saturation Solution641

Next, recalling Equation (3.67), an analytical solution for saturation is developed

under the limiting assumption.

dSo
dξ

= −dp
dξ

 2α
dp

dξ

∂R

∂p
− ξ

(
R
∂β

∂p
− ∂b

∂p

)
2α
dp

dξ

∂R

∂So
− ξ

(
R
∂β

∂So
− ∂b

∂So

)
 (3.80)

For large values of ξ (ξ → ∞), Equation (3.80) is simplified with the two phase642

pseudopressure defined by dm =
α

αi
dp to the equation below:643

dSo
dξ

=

αi

(
R
∂β

∂p
− ∂b

∂b

)
α

(
R
∂β

∂So
− ∂b

∂So

) dm
dξ

(3.81)

Incorporating the full expressions of the parameters, α, β, R and b into Equation

(3.80) results into Equation (3.81) given below:

dSo
dξ

=
kik
∗
ro

µoiBoi

Boµo
kkro

c∗so
dm

dξ
(3.82)

where;644

c∗so = c∗tfo − coxSo (3.83)

cox =
1

φ

dφ

dp
− 1

Bo

dBo

dp
(3.84)

N =
kik
∗
ro

µoiBoi

Bg

Bo

dRs

dp
+
krg
kro

Bg

Bo

d

dp

(
µo
µg

Bo

Bg

)
kkro
µoBo

fo(mi −mw) (3.85)

Evaluating the coefficients of (
dm

dξ
) of Equation (3.82) at their initial values (since

ξ →∞) yields:

dSo
dξ

=
Ni

mi −mw

dm

dξ
(3.86)
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where;

Ni =

(
Bg

Bo

dRs

dp

)
i

(mi −mw) (3.87)

The derivative
dm

dξ
of Equation (3.82) can be derived by differentiating the pres-645

sure solution obtained earlier. Since Equation (3.82) is a first order ODE, it646

requires a single boundary condition for saturation Equation (3.70) to solve it.647

648

Solving the ODE, Equation (3.86) with the appropriate boundary condition Equa-

tion (3.70) gives:

So(ξ) = 1−NiErfc

(
ξ

2
√
η∞

)
(3.88)

The full process of developing the analytical solution is presented at the Appendix.649

3.7.3 Production Parameters650

The derived pressure and saturation solution are utilized to derive equations for

oil production and cumulative production.

The cumulative oil production is expressed as:

Np(t) =

∫ t

0

qodt (3.89)

where qo, according to Darcy’s equation, is given by

qo = A
kkro
µoBo

∂p

∂r

∣∣∣
r=rw

(3.90)

Equation (3.90) is written in terms of the two phase pseudopressure as:

qo = A
kkro
µoiBoi

∂m

∂ξ

∣∣∣
ξ=0

(3.91)

Inserting the derivative of the pseudopressure (Equation (3.79)) yields:

qo = A
kkro
µoiBoi

(
mi −mw√

πη∞

)
1√
t

(3.92)
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Therefore the cumulative oil production given by Equation (3.89) is expressed as:

Np(t) = A
kik
∗
ro

µoiBoi

(
mi −mw√

πη∞

)√
t (3.93)

3.8 Determination of Gas-Oil Ratio651

The similarity transformation affords a means to express saturation as a unique652

function of pressure. Under the constant production pressure scenario, a constant653

saturation is imposed at the sandface or production face.654

655

Studies have shown that, although during transient flow, the average pressure and

saturation within the region of depletion are constant, the constant producing gas-

oil ratio (GOR) typical of tight oil reservoir cannot be attributed to the constant

average properties within the depletion zone. Based on this, the GOR is a function

of the conditions at the sandface. According to Tabatabaie and Pooladi-Darvish

(2016), the GOR for tight oil reservoirs can be evaluated by Equation (3.94):

GOR = Rs +
krgµoBo

kroµgBg

(3.94)
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Chapter 4656

Results and Discussion657

4.1 Introduction658

In this section, an analysis is performed on a base case to study the behavior of659

the reservoir during transient radial flow when it is subject to constant pressure660

production.661

662

4.2 Data Simulation663

A cylindrical reservoir of radius(r), 800m and pay thickness(H), 50m, is consid-664

ered. The porosity and the initial permeability of the flow problem are taken to665

be 0.1 and 0.01md respectively. The flow model is initially saturated with oil at666

a saturation pressure of 50000kPa and produced at constant flowing pressure of667

10000kPa. The fluid properties of the base case are presented in Figure 4.1 to668

Figure 4.5 below. The Corey-type relative permeability functions defined under669

Equation (4.1) and Equation (4.2) are employed to relate the variation of relative670

permeabilities to the saturation. This is illustrated by Figure (4.6).671

kro = k∗roS
no
o (4.1)

krg = k∗rg(1− So)ng (4.2)

Figures (4.1) through to (4.6) describe the Pressure-Volume-Temperature (PVT)672

parameters that are adopted for the study. Figure (4.1), for example, illustrates673

a typical behavior of the oil formation volume factor. Below the bubble point674

pressure, the oil formation volume factor increases with pressure. This is because675
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more gas goes into solution as the pressure is increased causing the oil to swell.676

677

Due to the dramatically different conditions prevailing at the reservoir when com-678

pared to the conditions at the surface, it is not expected that 1 barrel of fluid at679

reservoir conditions should contain the same amount of matter as 1 barrel of fluid680

at surface conditions. The volumetric factors (Bo) and (Bg) are introduced in the681

calculations in order to readily relate the volume of fluids that are obtained at682

the surface (stock tank) to the volume that the fluid actually occupy when it is683

compressed in the reservoir.684

685

Figure (4.5), which illustrates the solution gas-oil ratio to pressure is an integral686

parameter in the study of tight oil reservoirs. It increases approximately linearly687

with pressure and is a function of the oil and gas composition. Tight oils contains688

high amounts of dissolved gas hence the solution gas-oil ratio increases with pres-689

sure as observed in the Figure (4.5) until the bubble point pressure is reached,690

after which it is a constant, and the oil is said to be undersaturated.691

692

The end point relative permeabilities are considered as 1 whereas the gas and oil693

relative permeability exponents are considered as 2. This data is obtained from694

the work of Tabatabaie and Pooladi-Darvish (2016)695
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Figure 4.1: Oil formation volume factor verses pressure

Figure 4.2: Gas formation volume factor verses pressure

Figure 4.3: Oil viscosity verses pressure
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Figure 4.4: Gas viscosity verses pressure

Figure 4.5: Oil-Gas solubility ratio verses pressure

Figure 4.6: Corey-type relative permeability plots for oil and gas
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4.2.1 Results of Simulations696

The model exhibits transient flow over the given period of time after the pressure697

disturbance has been created in the reservoir. The reduction of reservoir pres-698

sure at initial conditions to the constant pressure production at the well-bore or699

production face causes reservoir fluids to flow near the vicinity of the well. The700

pressure drop of the expanding fluid will provoke flow from further, undisturbed701

regions in the reservoir. The pressure disturbance and fluid movement will con-702

tinue to propagate radially away from the well-bore over the given period.703

704

Figure 4.7: Pressure profile in time and space

Figure 4.8: Gas saturation profile in time and space
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Figure 4.9: Oil saturation profile in time and space

Figure 4.10: Pressure profile in in terms of ξ
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Figure 4.11: Gas saturation profile in in terms of ξ

Figure 4.12: Oil saturation profile in in terms of ξ
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Figure 4.14: The Gas-Oil Ratio pattern for the entire simulation period

4.2.2 Observations705

The constant pressure production of 10000kPa causes a two phase flow of oil and706

gas through the porous media into the well bore. The drop of pressure below the707

bubble point of pressure(50000kPa) causes the evolution of gases out of solution708

as flow propagates into the well bore. The nature of the pressure drop over the709

domain directly affects the saturation distribution of fluids (oil and gas) over the710

domain.711

712

In the time for which the transient condition is applied it is observed that, the713

pressure profile for each time step do not significantly differ. This is as result to714

the assumption made on the proportion of oil to gas in the system. The slightly715

compressible nature of the system causes the system to behave in a manner sim-716

ilar to a single phase flow.717
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718

Figures (4.7), (4.9) and (4.8) present the pressure and saturation (oil and gas)719

distributions respectively, over the period of transient two-phase flow regime.720

These distributions over the domain in time and space result from the numerical721

approach for solving the PDEs that describe the flow process. These plots show722

that, as time increases, pressure disturbance propagates throughout the reservoir.723

After the pressure drops below the bubble point pressure (which, in this case, is724

equal to the initial reservoir pressure), gas is released, and the oil saturation re-725

duces.726

727

It is also observed that the solution found by solving ODEs in the similarity728

approach do not significantly differ from the profiles obtained by solving the orig-729

inal PDEs numerically. These are also illustrated in Figures (4.13a), (4.13b) and730

(4.13c).731

732

Last but not least, Figure (4.14) shows that, for the data considered, the produc-733

ing GOR is about four times larger than the initial GOR of the reservoir. The734

producing GOR maintains a constant value throughout the period of the constant735

pressure production at the sandface.736

4.3 Discussion737

In this study, the highly non-linear radial flow equations governing oil and gas738

flow in tight oil reservoir producing at constant pressure are converted to two739

nonlinear ODEs for pressure and saturation. Obtaining solutions to the resulting740

non-linear ODEs after the Boltzmann transformation is simpler and much faster741

than solving the original PDEs.742

743

The transformation of the PDEs to the ODEs was dependent on the condition744

that, all independent variables (r and t) can be combined to a single form of the745
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Boltzmann variable (ξ). In this way, none of the original independent variables of746

the mathematical model, remained after the transformation was performed. This747

study showed that, during transient radial flow period under constant bottom-748

hole pressure production, pressure and saturation are unique functions of the749

Boltzmann variable.750

751

Since, the PDEs describing the problem are in terms of radius, r and time, t are752

reduced to ODEs in terms of the Boltzmann variable, ξ, it causes the transient753

pressure and saturation profiles in real time domain to collapse unto a single curve754

when plotted verses the Boltzmann variable, ξ as observed in the Figures (4.13a),755

(4.13b) and (4.13c). However, all the real time solutions (p(r, t) or So(r, t)) can be756

readily calculated by taking any point on the plot of p(ξ) (or So(ξ) and assigning757

their values to a corresponding distance found from ξ =
r√
t

at any particular758

time.759

760

The model framework provides the opportunity to explain some of the observed761

behavior of tight oil reservoirs such as the constant producing GOR during tran-762

sient radial flow of a reservoir producing at constant pressure. The producing763

GOR is controlled by the pressure and saturation at the sandface or production764

face of the reservoir. This behavior is not attributed to the average properties765

within the region of depletion. It is shown by Figure (4.14) that, if two phase766

fluid flow can be modeled with Equation (3.1) and Equation (3.1), the producing767

GOR is constant during the transient flow at constant producing pressure. If any768

of the assumptions made in the development of the model are not satisfied, the769

producing GOR may vary with time.770

771

Figure (4.14) shows that the instantaneous producing gas-oil ratio (GOR) is con-772

stant during transient radial flow for constant pressure production. The constant773

behavior of producing GOR has also been observed by several researchers, in-774
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cluding Whitson and Sunjerga (2012) and Behmanesh (2016). This affirms the775

typical behavior of tight oil reservoirs when subject to constant pressure at the776

producing face.777

778

Equation (3.94) gives the plot shown in Figure (4.14) which shows that, during779

transient radial flow at constant pressure production, the producing GOR is a780

function of fluid properties, relative permeability and flowing pressure. Figure781

(4.14) also shows that, for the data considered, the producing GOR is about four782

times larger than the initial solution GOR. This implies that the recombination783

of fluid samples collected at the surface in the ratio of producing GOR does not784

represent the in-situ reservoir fluid.785

786

It is based on the outcomes of the similarity and numerical approaches that787

fostered the determination of an analytical solution for the limiting case (infinite788

acting conditions). The viability of this endeavour leans on the mathematical fact789

that, radial flow under an infinite acting boundary condition eventually takes a790

linear flow pattern for larger reservoir extents. In the development of the analyt-791

ical solution, the infinite acting boundedness imposed on the resevoir caused the792

radial flow regime to take a linear flow pattern under the limiting assumption.793

Hence, the analytical solution developed in this work conformed with the results794

obtained by Tabatabaie and Pooladi-Darvish (2016), in his work on linear flow795

in tight oil reservoirs.796

797

Despite this development, the practicality of the results of the analytical solu-798

tion remains stalled. From, Equations (3.78) through to (3.93), the initial gas799

saturation is zero due to the infinite boundary condition imposed on the flow800

problem. Hence, evaluation of η∞ at initial conditions removes the effect of gas801

mobility from the analytical solution (since,

(
krg
µg

)
i

= 0). However, it accounts802

for the effect of gas on oil flow, by changing kro, and the effect of gas evolution803
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on compressibility, given as,

(
SoBg

Bo

)
i

(
dRs

dp

)
i

.804

805

In the methodology, it was explained that, reservoirs with higher gas mobility806

lose energy support faster than reservoirs with lower gas mobility and as such807

produces less. It is therefore necessary to take into account the effect of gas mo-808

bility in Equation (3.92) and (3.93) by determining a correction factor.809

810

It is worth noting that, no assumptions regarding the variation of porosity and811

absolute permeability with pressure were considered in the radial flow model.812

The saturation-pressure relationship as well as the relation for the producing813

GOR used in this study are independent of absolute permeability. The total814

system compressibility derived in this study on two-phase-flow is similar to the815

formulations introduced by Martin (1959). As discussed by Ramey (1964), the816

total system compressibility, rather than the single phase compressibility, is more817

useful for multiphase pressure transient analysis.818

819
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Chapter 5820

Conclusion and Recommendation821

5.1 Conclusion822

The radial multiphase flow phenomenon in tight oil reservoirs presents itself as823

a nonlinear problem yet the equations used in this study provide a reasonable824

explanation of the physics in the reservoir. It took into account the occurrence825

of both dissolved and evolved gases in the system.826

827

This study presented the application of the similarity transformation to obtain828

ODEs that have the capability of rigorously solving the governing PDEs for the829

radial two phase flow in tight oil reservoir. The simplicity of the system of ODEs830

presented here, enabled the quick calculation of reservoir profiles for the problem831

under consideration.832

833

The similarity approximation which facilitated the analyses of the problems was834

adequate. For the radial flow problem defined in this study, the similarity ap-835

proximation delivered a good estimate in comparison to the numerical solution.836

The similarity solutions are satisfactorily sufficient in solving the flow problem.837

838

The results from the producing GOR concludes that, the recombination of fluid839

samples collected at the surface in the ratio of producing GOR does not represent840

the in-situ reservoir fluid. This is a typical behavior of tight oil reservoirs which841

are produced at constant pressure.842

843

The analytical solution developed in this work conforms with the results obtained844
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by Tabatabaie and Pooladi-Darvish (2016), in his work on linear flow in tight oil845

reservoirs.846

847

Despite the somewhat ideal assumptions impose on the model, the variability of848

the data used and the concepts adopted helped to theoretically bring the prob-849

lem representation closer to similar cases in literature. This was achieved as the850

constant GOR which is a common phenomenon in tight oil reservoir studies was851

attained.852

853

5.2 Recommendations854

It is recommended that strict adherence to the assumptions on the model be855

considered when carrying out this work. This study was achieved under many856

simplifying assumptions to the flow. It is necessary to take into account the full857

mechanics of the problem to better understand the viability of similarity trans-858

formation in reservoir engineering techniques. Since, no assumptions regarding859

the variation of porosity and absolute permeability with pressure were considered860

in this study, it is recommended that, further investigation be carried out on this861

factor.862

863

The practicality of the analytical solution remains stalled. Due to the infinite864

acting boundary assumption imposed on the flow, the initial gas saturation was865

considered as zero which ignored the effect of gas mobility from the analytical866

solution. It is therefore necessary to develop a correction factor to account for867

the evolution of gases when using the analytical solution. This will provide better868

insight to the behavior of tight oil reservoirs exhibiting multiphase flow.869

870
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Appendix A935

Analytical Solution as ξ → 0936

In this section, an analytical solutions is developed for the pressure and saturation937

by evaluating the terms of the transformed diffusivity equations at large values of938

ξ. Practically, this corresponds to small values of time or large values of distance,939

since ξ is a function of r and t. First, a pressure and saturation equation must940

be obtained941

A.1 Pressure Equation942

The oil diffusivity equation is expressed as:

d

dξ

(
α
dp

dξ

)
+
α

ξ

dp

dξ
= −ξ

2

∂β

∂ξ
(A.1)

At large values of ξ,
α

ξ

∂p

∂ξ
→ 0.

Since β is a function of p and So, Equation (A.1) is expanded and written as:

d

dξ

(
α
dp

dξ

)
= −ξ

2

[
∂β

∂p

dp

dξ
+

∂β

∂So

dSo

dξ

]
(A.2)

Equation (A.2) has two unknowns (pressure and saturation). If saturation were943

known, Equation (A.2) could be solved directly to find pressure as a function of944

the Boltzmann variable. However, saturation profile is not known at priori. In945

order to complete the system of equations and unknowns, the diffusivity equation946

of gas is employed.947
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A.2 Saturation Equation948

The gas diffusivity equations are expressed as:

α
∂R

∂ξ

dp

dξ
=
ξ

2

[
R
∂β

∂ξ
− ∂b

∂ξ

]
(A.3)

Since R, b and β are a function of p and So, Equation (A.3) is expanded and

written as:

α

(
∂R

∂p

dp

dξ
+
∂R

∂So

So

dξ

)
dp

dξ
=
ξ

2

[
R

(
∂β

∂p

dp

dξ
+

∂β

∂So

So

dξ

)
−
(
∂b

∂p

dp

dξ
+

∂b

∂So

So

dξ

)]
(A.4)

Re-arranging Equation (A.4) yields the saturation equation, given as:

dSo
dξ

= −dp
dξ

 2α
dp

dξ

∂R

∂p
− ξ

(
R
∂β

∂p
− ∂b

∂p

)
2α
dp

dξ

∂R

∂So
− ξ

(
R
∂β

∂So
− ∂b

∂So

)
 (A.5)

A.3 Boundary Conditions949

To sovle the pressure and saturation equations, the following initial and boundary950

conditions are used;951

p = pw, ξ = 0 (A.6)

p = pe, ξ →∞ (A.7)

So = 1, ξ →∞ (A.8)
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A.4 Pressure Solution952

Obtaining the analytical solution for pressure requires substitution of Equation953

(A.5) into Equation (A.2) to obtain:954

d

dξ

(
α
dp

dξ

)
=
ξ

2

∂β∂p dpdξ +
∂β

∂So

dp

dξ

 2α
dp

dξ

∂R

∂p
− ξ

(
R
∂β

∂p
− ∂b

∂p

)
2α
dp

dξ

∂R

∂So
− ξ

(
R
∂β

∂So
− ∂b

∂So

)

 (A.9)

The two-phase pseudopressure,(m) given by

m(p) =
1

αi

p∫
pb

αdp =
µoiBoi

kik∗ro

p∫
pb

kkro
µoBo

dp (A.10)

is introduced to reduce the non-linearity associated with Equation (A.9) . Here,955

the two-phase pseudopressure is defined as dm =
α

αi
dp which yields:956

d2m

dξ2
=
ξαi
2α

∂β∂p − ∂β

∂So

 R
∂β

∂p
− ∂b

∂p

R
∂β

∂So
− ∂b

∂So


 dmdξ (A.11)

Under the assumption of ξ →∞ Equation (A.11) is expressed as:

d2m

dξ2
+

ξ

2η∞

dm

dξ
= 0 (A.12)

where;957

η∞ =

α

(
R
∂β

∂So
− ∂b

∂So

)
∂β

∂p
+
∂β

∂So

dSo
dp

(A.13)

Replacing α, β, b and R into Equation (A.13) gives

η∞ =
kkro
φµoc∗t

1

fo
(A.14)
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where;958

c∗t =
SoBo

Bo

dRs

dp
− Sg
Bg

dBg

dp
− So
Bo

dBo

dp
+

1

φ

dφ

dp
(A.15)

fo =
1

1 +
krg
kro

µo
µg

(A.16)

Now, the process for obtaining the analytical solution of Equation (A.12) during959

constant pressure production is carried out. Under the assumption that η∞ is960

a weak function of m, (η∞ = η∞ = constant ) the solution of Equation (A.12)961

along using two boundary conditions for pressure (Equation (A.6) and Equation962

(A.7) ) is readily obtained.963

A.4.1 Solving for m(ξ)964

From Equation (A.12), given by:

∗d
2m

dξ2
+

ξ

2η∞

dm

dξ
= 0 (A.17)

Reducing the order of Equation (A.17) by letting
dm

dξ
= u, then Equation (A.17)

becomes:

du

dξ
= − ξ

2η∞
u (A.18)

By the method of separation of variables and integrating both sides the following

equation results:

u = e−
ξ2

4η∞ .c1 (A.19)

where c1 is a constant of integration. Substituting u (Equation (A.19) ) back into

dm

dξ
= u and integrating both sides gives;

m(ξ) = ciErfc

(
− ξ

2
√
η∞

)
+ c2 (A.20)
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Given that, the special values Erfc(0) = 1 and Erfc(∞) = 0. Evaluation m(ξ)

at ξ = 0 and ξ =∞ shows that

m(ξ = 0) = mw = c1 + c2

and

m(ξ =∞) = mi = c2

Hence, the pressure solution becomes;

m(ξ) = mi − (mi −mw)Erfc

(
ξ

2
√
η∞

)
(A.21)

It should be noted that the evaluation of pseudopressure, in Equation (A.21) ,965

requires a knowledge of the saturation-pressure relationship. Since this relation-966

ship is not known priori, it is alternatively convenient to explore a solution where967

pseudopressure is evaluated at initial oil saturation.968

A.5 Saturation Solution969

For large values of ξ (ξ → ∞) Equation (A.5) is simplified by introducing the970

two phase pseudo-pressure defined as dm =
α

αi
dp. This yields;971

dSo
dξ

=

αi

(
R
∂β

∂p
− ∂b

∂b

)
α

(
R
∂β

∂So
− ∂b

∂So

) dm
dξ

(A.22)

Incorporating the parameters, α, β, R and b into Equation (A.22) results to:

dSo
dξ

=
kik
∗
ro

µoiBoi

Boµo
kkro

c∗to
dm

dξ
(A.23)
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where;972

c∗so = c∗tfo − coxSo (A.24)

cox =
1

φ

dφ

dp
− 1

Bo

dBo

dp
(A.25)

N =
kik
∗
ro

µoiBoi

Bg

Bo

dRs

dp
+
krg
kro

Bg

Bo

d

dp

(
µo
µg

Bo

Bg

)
kkro
µoBo

fo(mi −mw) (A.26)

Evaluating the coefficients of Equation (A.23) at their initial values (for ξ →∞)

yields:

dSo
dξ

=
Ni

mi −mw

dm

dξ
(A.27)

where;

Ni =

(
Bg

Bo

dRs

dp

)
i

(mi −mw) (A.28)

Since Equation (A.27) is a first order ODE, a single initial condition for saturation973

given by Equation (A.8) is sufficient to solve it.974

A.5.1 Solving for So(ξ)975

Recall the derivative
dm

dξ
of the pressure solution (Equation (A.19)) as:

u = e−
ξ2

4η∞ .c1 (A.29)

Substituting the derivative of
dm

dξ
(Equation (A.29) )into Equation (A.27) and

integrating both sides of the resulting equation gives:

So(ξ) = c1
Ni

(mi −mw)
Erfc

(
ξ

2
√
η∞

)
+ c2 (A.30)

where c1 = mw −mi = −(mi −mw)

This yields;

So(ξ) = −NiErfc

(
ξ

2
√
η∞

)
+ c2 (A.31)
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Given that, the special value Erfc(∞) = 0.

Evaluation So(ξ) at ξ =∞ shows that

So(ξ =∞) = Soi = 1 = c2

Hence, the saturation solution becomes;

So(ξ) = 1−NiErfc

(
ξ

2
√
η∞

)
(A.32)
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Appendix B976

Flowchart of the Algorithm for the Numerical977

Approach978
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Figure B.1: A schematic drawing to illustrate the process involved in developing
the Matlab code
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